Skip to main content

Advertisement

Log in

An energy management system for off-grid power systems

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

Next generation power management at all scales will rely on the efficient scheduling and operation of both generating units and loads to maximize efficiency and utility. The ability to schedule and modulate the demand levels of a subset of loads within a power system can lead to more efficient use of the generating units. These methods become increasingly important for systems that operate independently of the main utility, such as microgrid and off-grid systems. This work extends the principles of unit commitment and economic dispatch problems to off-grid power systems where the loads are also schedulable. We propose a general optimization framework for solving the energy management problem in these systems. An important contribution is the description of how a wide range of sources and loads, including those with discrete states, non-convex, and nonlinear cost or utility functions, can be reformulated as a convex optimization problem using, for example, a shortest path description. Once cast in this way, solution are obtainable using a sub-gradient algorithm that also lends itself to a distributed implementation. The methods are demonstrated by a simulation of an off-grid solar powered community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. At times we will also refer to the “disutility” of loads. In this way, we aim to minimize the disutility.

  2. They can be included for completeness by defining, for example, \(x_{i}^{g}(t+1) = f_{i}^{g}(g_{i}(t),x_{i}^{g}(t), u_{i}^{g}(t))=0\).

  3. A similar formulation can be used for the loads.

  4. In this way, the transition cost reflects a change in state at time t to time (t+1); the transition cost could similarly be defined to reflect the change from time (t−1) to t, representing a slightly different interpretation for the total cost at time t.

  5. For an equality constraint, as in (2.7), the multiplier is unconstrained. If, however, the power balance constraint was written as an inequality constraint, the multiplier update (3.8) would have to be projected onto the positive orthant.

  6. Note that for the remainder of this example we refer to ‘disutility’ as opposed to ‘utility.’ This is without loss of generality and translates only to a sign change for the load segment of (2.1).

Abbreviations

G,L :

number of generating units, number of loads

\(\mathcal{G},\mathcal{L}\) :

set of generating units, set of loads

T :

time horizon

\(\mathcal{T}\) :

set of time indices

i,j,t :

index for generating units, loads, and time

g i (t),y j (t):

power level of generating unit \(i \in \mathcal{G}\) and demand of load \(j \in\mathcal{L}\) at time \(t \in\mathcal{T}\)

\(x_{i}^{g}(t), u_{i}^{g}(t)\) :

state and control variables for generating unit \(i \in\mathcal{G}\) at time \(t \in\mathcal{T}\)

\(x_{j}^{l}(t), u_{j}^{l}(t)\) :

state and control variables for load \(j\in\mathcal{L}\) at time \(t \in\mathcal{T}\)

\(f_{i}^{g}(g_{i}(t),x_{i}^{g}(t),u_{i}^{g}(t))\) :

dynamic evolution of generating unit variables for unit \(i \in\mathcal{G}\)

\(f_{j}^{l}(y_{j}(t),x_{j}^{l}(t),u_{j}^{l}(t))\) :

dynamic evolution of load variables for load \(j \in\mathcal{L}\)

\(C_{i}(g_{i}(t),x_{i}^{g}(t),u_{i}^{g}(t))\) :

operating cost of generator unit \(i \in\mathcal{G}\) at time \(t \in\mathcal{T}\)

\(U_{j}(y_{j}(t),x_{j}^{l}(t),u_{j}^{l}(t))\) :

utility of load \(j \in\mathcal {L}\) at time \(t \in\mathcal{T}\)

\(\mathcal{S}_{i}^{g}(t),\mathcal{S}_{j}^{l}(t)\) :

abstract constraint set for generator unit \(i \in\mathcal{G}\) and load \(j \in\mathcal{L}\) at time \(t \in \mathcal{T}\)

\(\mathcal{X}_{i}^{g}(t),\mathcal{U}_{i}^{g}(t)\) :

abstract constraint set for generator load state and control variables at \(t \in\mathcal{T}\)

\(\mathcal{X}_{j}^{l}(t), \,\mathcal{U}_{j}^{l}(t)\) :

abstract constraint set for load state and control variables at \(t \in\mathcal{T}\)

L(⋅),q(λ):

Lagrangian and dual functions

λ t ,v(λ t ),α :

Lagrange multiplier and sub-gradient at time \(t \in\mathcal{T}\), step size

References

  1. US department of energy, smart grid. http://www.oe.energy.gov/smartgrid.htm

  2. European commission on energy, smartgrids. http://www.smartgrids.eu/

  3. Ipakchi, A., Albuyeh, F.: Grid of the future. IEEE Power Energy Mag. 7(2), 52–62 (2009)

    Article  Google Scholar 

  4. Fan, J., Borlase, S.: The evolution of distribution. IEEE Power Energy Mag. 7(2), 63–68 (2009)

    Article  Google Scholar 

  5. Farhangi, H.: The path of the smart grid. IEEE Power Energy Mag. 8(1), 18–28 (2010)

    Article  MathSciNet  Google Scholar 

  6. Brown, R.E.: Impact of smart grid on distribution system design. In: Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, 2008, pp. 1–4. IEEE Press, New York (2008)

    Chapter  Google Scholar 

  7. Hatziargyriou, N.: Microgrids [guest editorial]. IEEE Power Energy Mag. 6(3), 26–29 (2008)

    Article  Google Scholar 

  8. Katiraei, F., Iravani, R., Hatziargyriou, N., Dimeas, A.: Microgrids management. IEEE Power Energy Mag. 6(3), 54–65 (2008)

    Article  Google Scholar 

  9. Thornley, V., Kemsley, R., Barbier, C., Nicholson, G.: User perception of demand side management. In: SmartGrids for Distribution IET-CIRED, Frankfurt, Germany (2008)

    Google Scholar 

  10. Zhang, D., Papageorgiou, L.G., Samsatli, N.J., Shah, N.: Optimal scheduling of smart homes energy consumption with microgrid. In: Energy 2011: The First International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies, no. c, pp. 70–75 (2011)

    Google Scholar 

  11. Misak, S., Prokop, L.: Off-grid power systems. In: 9th International Conference on Environment and Electrical Engineering, 2010, pp. 14–17. IEEE Press, New York (2010)

    Chapter  Google Scholar 

  12. Muntean, N., Cornea, O., Petrila, D.: A new conversion and control system for a small off—grid wind turbine. In: 12th International Conference on Optimization of Electrical and Electronic Equipment, 2010, pp. 1167–1173. IEEE Press, New York (2010)

    Chapter  Google Scholar 

  13. Leak, M.H., . Rashid, M.: Feasibility of off-grid residential power. In: CONIELECOMP 2011, 21st International Conference on Electrical Communications and Computers, pp. 14–17. IEEE Press, New York (2011)

    Chapter  Google Scholar 

  14. Chan, C.C.: The state of the art of electric, hybrid, and fuel cell vehicles. Proc. IEEE 95(4), 704–718 (2007)

    Article  Google Scholar 

  15. Koot, M., Kessels, J., DeJager, B., Heemels, W., VandenBosch, P., Steinbuch, M.: Energy management strategies for vehicular electric power systems. IEEE Trans. Veh. Technol. 54(3), 771–782 (2005)

    Article  Google Scholar 

  16. Davey, K., Longoria, R., Shutt, W., Carroll, J., Nagaraj, K., Park, J., Rosenwinkesl, T., Wu, W., Arapostathis, A.: Reconfiguration in shipboard power systems. Am. Control Conf. 80(6), 064501 (2007)

    Google Scholar 

  17. Maldonado, M., Shah, N., Cleek, K., Walia, P., Korba, G.: Power Management and Distribution System for a More-Electric Aircraft (MADMEL)-Program Status. IEEE Press, New York (2004)

    Google Scholar 

  18. Cloyd, J.: Status of the United States air force’s more electric aircraft initiative. IEEE Aerosp. Electron. Syst. Mag. 13(4), 17–22 (1998)

    Article  Google Scholar 

  19. Luongo, C.A., Masson, P.J., Nam, T., Mavris, D., Kim, H.D., Brown, G.V., Waters, M., Hall, D.: Next generation more-electric aircraft: a potential application for HTS superconductors. IEEE Trans. Appl. Supercond. 19(3), 1055–1068 (2009)

    Article  Google Scholar 

  20. Mohsenian-Rad, A.H., Leon-Garcia, A.: Optimal residential load control with price prediction in real-time electricity pricing environments. IEEE Trans. Smart Grid 1(2), 120–133 (2010)

    Article  Google Scholar 

  21. Ricquebourg, V., Menga, D., Durand, D., Marhic, B., Delahoche, L., Loge, C.: The smart home concept: our immediate future. In: 1st IEEE International Conference on E-Learning in Industrial Electronics, 2006, pp. 23–28. IEEE Press, New York (2006)

    Chapter  Google Scholar 

  22. Bertsekas, D.P., Lauer, G.S., Sandell, N.R.J., Posbergh, T.A.: Optimal short-term scheduling of large-scale power systems. IEEE Trans. Autom. Control AC-28(1), 1–11 (1983)

    Article  Google Scholar 

  23. Gruhl, J., Schweppe, F., Ruane, M.: Unit commitment scheduling of electric power systems. In: System Engineering for Power: Status and Prospects, Henniker, NH, pp. 116–128 (1972)

    Google Scholar 

  24. Muckstadt, J., Koenig, S.: An application of Lagrangian relaxation to scheduling in power generation systems. Oper. Res. 25(3), 387–403 (1977)

    Article  MATH  Google Scholar 

  25. Kirchmayer, L.K.: Economic Operation of Power Systems. Wiley, New York (1958)

    Google Scholar 

  26. Guan, X., Luh, P., Yan, H., Amalfi, J.: An optimization-based method for unit commitment. Electr. Power Energy Syst. 14(1), 9–17 (1992)

    Article  Google Scholar 

  27. Ongsakul, W., Petcharaks, N.: Unit commitment by enhanced adaptive Lagrangian relaxation. IEEE Trans. Power Syst. 19(1), 620–628 (2004)

    Article  Google Scholar 

  28. Papalexopoulos, A.: Optimization based methods for unit commitment: Lagrangian relaxation versus general mixed integer programming. In: IEEE Power Engineering Society General Meeting (IEEE Cat. No. 03CH37491), 2003, pp. 1095–1100. IEEE Press, New York (2003)

    Google Scholar 

  29. Li, T., Shahidehpour, M.: Price-based unit commitment: a case of Lagrangian relaxation versus mixed integer programming. IEEE Trans. Power Syst. 20(4), 2015–2025 (2005)

    Article  Google Scholar 

  30. Joo, J.Y., Ilic, M.D.: A multi-layered adaptive load management (alm) system: Information exchange between market participants for efficient and reliable energy use. In: Transmission and Distribution Conference and Exposition, 2010 IEEE PES, April, pp. 1–7 (2010)

    Google Scholar 

  31. Fahrioglu, M., Alvarado, F.: Using utility information to calibrate customer demand management behavior models. In: IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No. 02CH37309), 2002, vol. 1, p. 26. IEEE Press, New York (2002)

    Chapter  Google Scholar 

  32. Samadi, P., Mohsenian-Rad, A.-H., Schober, R., Wong, V.W.S., Jatskevich, J.: Optimal real-time pricing algorithm based on utility maximization for smart grid. In: First IEEE International Conference on Smart Grid Communications, 2010, pp. 415–420. IEEE Press, New York (2010)

    Chapter  Google Scholar 

  33. Pedrasa, M.A.A., Spooner, T.D., MacGill, I.F.: Coordinated scheduling of residential distributed energy resources to optimize smart home energy services. IEEE Trans. Smart Grid 1(2), 134–143 (2010)

    Article  Google Scholar 

  34. Chiang, M., Low, S.H., Calderbank, A.R., Doyle, J.: Layering as optimization decomposition: a mathematical theory of network architectures. Proc. IEEE 95(1), 255–312 (2007)

    Article  Google Scholar 

  35. Nedic, A., Ozdaglar, A.: Subgradient methods in network resource allocation: Rate analysis. In: 42nd Annual Conference on Information Sciences and Systems, 2008, pp. 1189–1194. IEEE Press, New York (2008)

    Chapter  Google Scholar 

  36. Andrade, L., Tenning, C.: Design of Boeing 777 electric system. IEEE Aerosp. Electron. Syst. Mag. 7(7), 4–11 (1992)

    Article  Google Scholar 

  37. Huneault, M., Galiana, F.D.: A survey of the optimal power flow literature. IEEE Trans. Power Syst. 6(2), 762–770 (1991)

    Article  Google Scholar 

  38. Xu, D., Girgis, A.: Optimal load shedding strategy in power systems with distributed generation. In: IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No. 01CH37194), no. C, 2001, pp. 788–793. IEEE Press, New York (2001)

    Google Scholar 

  39. Bhattacharyya, K., Crow, M.: A fuzzy logic based approach to direct load control. IEEE Trans. Power Syst. 11(2), 708–714 (1996)

    Article  Google Scholar 

  40. Cohen, A., Wang, C.: An optimization method for load management scheduling. IEEE Trans. Power Syst. 3(2), 612–618 (1988)

    Article  MathSciNet  Google Scholar 

  41. Ng, K.H., Sheble, G.B.: Direct load control—a profit-based load management using linear programming. IEEE Trans. Power Syst. 13(2), 688–695 (1998)

    Article  Google Scholar 

  42. Ramanathan, B., Vittal, V.: A framework for evaluation of advanced direct load control with minimum disruption. IEEE Trans. Power Syst. 23(4), 1681–1688 (2008)

    Article  Google Scholar 

  43. Widergren, S.E.: Demand or request: Will load behave? In: IEEE Power & Energy Society General Meeting, 2009, pp. 1–5. IEEE Press, New York (2009)

    Chapter  Google Scholar 

  44. Ruiz, N., Cobelo, I.N., Oyarzabal, J.: A direct load control model for virtual power plant management. IEEE Trans. Power Syst. 24(2), 959–966 (2009)

    Article  Google Scholar 

  45. Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  46. Rockafellar, R.T.: Network Flows and Monotropic Optimization. Wiley, New York (1984)

    MATH  Google Scholar 

  47. Frangioni, A.: Solving nonlinear single-unit commitment problems with ramping constraints. Oper. Res. 54, 775 (2006)

    Article  Google Scholar 

  48. Ruszczynski, A.: Nonlinear Optimization. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  49. Bertsekas, D.P.: Dynamic Programming and Optimal Control. Athena Scientific, Belmont (2007)

    Google Scholar 

  50. Sherali, H., Choi, G.: Recovery of primal solutions when using subgradient optimization methods to solve Lagrangian duals of linear programs. Oper. Res. Lett. 19(3), 105–113 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  51. Medium ac off grid solar powered system for your home. http://www.wholesalesolar.com/solarpowersystems/medium-2-ac-home-off-grid-solar-power.html

Download references

Acknowledgements

The authors would like to thank the associate editor and reviewers for the in-depth comments and discussions regarding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Zelazo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zelazo, D., Dai, R. & Mesbahi, M. An energy management system for off-grid power systems. Energy Syst 3, 153–179 (2012). https://doi.org/10.1007/s12667-012-0050-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-012-0050-4

Keywords

Navigation