Skip to main content
Log in

Comparative study of single and double electron capture from atoms by fast bare ions

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Total cross sections for single and double electron capture in collisions of bare ion with helium-like atoms are calculated at energies ranging from 50 to 6,000 keV/amu. The present calculations are carried out using four-body formalism of Coulomb–Born distorted wave formalism and boundary corrected continuum intermediate state approximation. We have made a comparison between single and double electron capture cross sections using both the methods in wide range of energies at different charge state of the projectile. Total cross sections have been calculated by summing over all the contributions up to n = 2 shells and sub-shells. It is also noted that double electron capture cross sections are small thorough out the energy region compared with the single electron capture cross sections. However, the present computed results for asymmetric collisions have been compared with available theoretical and experimental results. We find that our numerical results for total cross sections show good agreement with the available experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R K Janev Atomic and Molecular Processes in Fusion Edge Plasmas (New York: Plenum) (1995)

  2. I Murakami, J Yan, H Sato, M Kimura, R K. Janev and T Kato At. Data Nucl. Data Tables 94 161 (2008)

    Article  ADS  Google Scholar 

  3. M Ghosh, C R Mandal and S C Mukherjee J. Phys. B At. Mol. Phys. 18 3797 (1985)

    Article  ADS  Google Scholar 

  4. R E Olson J. Phys. B At. Mol. Phys. 15 L163 (1982)

    Article  ADS  Google Scholar 

  5. Dz Belkic J. Phys. B At. Mol. Opt. Phys. 26 497 (1993)

  6. Dz Belkic Phys. Rev. A 47 189 (1993)

    Article  Google Scholar 

  7. Dz Belkic Phys. Rev. A 47 3824 (1993)

    Article  Google Scholar 

  8. Dz Belkic, I Mancev and M Mudrinic Phys. Rev. A 49 3646 (1994)

    Article  ADS  Google Scholar 

  9. Dz Belkic Nucl. Instrum. Methods Phys. Res. B 62 86 (1994)

    Google Scholar 

  10. Dz Belkic, R Gayet, J Hanssen, I Mancev and A Nunez Phys. Rev. A 56 3675 (1997)

    Article  ADS  Google Scholar 

  11. I Mancev, N Milojevic and Dz Belkic Phys. Rev. A 88 052706 (2013)

    Article  ADS  Google Scholar 

  12. I Ben-Itzhak, A Jain and O L Weaver J. Phys. B At. Mol. Opt. Phys. 26 1711 (1993)

    Article  ADS  Google Scholar 

  13. H F Busnengo, A E Martinez and R D Rivarola J. Phys. B At. Mol. Opt. Phys. 29 4193 (1996)

    Article  ADS  Google Scholar 

  14. R Gayet, J Hanssen, L Jacqui, A Martinez and R Rivarola Phys. Scr. 53 549 (1996)

    Article  ADS  Google Scholar 

  15. Dz Belkic, I Mancev and J Hanssen Rev. Mod. Phys. 80 249 (2008)

    Article  ADS  Google Scholar 

  16. M Purkait Eur. Phys. J. D 30 11 (2004)

    Article  ADS  Google Scholar 

  17. S Ghosh, A Dhara, M Purkait and C R Mandal Indian J. Phys. 84 231 (2010)

    Article  ADS  Google Scholar 

  18. S Ghosh, A Dhara, C R Mandal and M Purkait Phys. Rev. A 78 042708 (2008)

    Article  ADS  Google Scholar 

  19. R Samanta, M Purkait and C R. Mandal Phys. Rev. A 83 032706 (2011)

    Article  ADS  Google Scholar 

  20. R Samanta, S Jana, S Ghosh, M Purkait and C R Mandal Indian J. Phys. 86 503 (2012)

    Article  ADS  Google Scholar 

  21. S Jana and M Purkait Indian J. Phys. 88 343 (2014)

    Article  ADS  Google Scholar 

  22. B Ding Phys. Scr. 85 015302 (2012)

    Article  ADS  Google Scholar 

  23. N Bohr, L Lindhard and K Dan Vidensk Selsk. Mat. Fys. Medd 28 7 (1954)

    Google Scholar 

  24. M B Shah and H B Gilbody J. Phys. B 18 899 (1985)

    Article  ADS  Google Scholar 

  25. O Woitke, P A Zavodszky, S M Ferguson, J H Houck and J A Tanis Phys. Rev. A 57 2692 (1998)

    Article  ADS  Google Scholar 

  26. M M Sant’ Anna et al. Phys. Rev. A 80 042707 (2009)

  27. W S Melo et al. Phys. Rev. A 60 1124 (1999)

    Article  ADS  Google Scholar 

  28. R Hippler, S Datz, P D Miller, P L Pepmiller and P F Dittner Phys. Rev. A 35 585 (1987)

    Article  ADS  Google Scholar 

  29. T R Dillingham, J R Macdonald and Patrick Richard Phys. Rev. A 24 1237 (1981)

    Article  ADS  Google Scholar 

  30. J A Guffey, L D Ellsworth and J R Macdonald Phys. Rev. A 15 1963 (1977)

    Article  ADS  Google Scholar 

  31. M Sasao et al. J. Phys. Soc. Jpn. 55 102 (1986)

    Article  ADS  Google Scholar 

  32. R W McCullogh, T V Goffe, M B Shah, M Lennon and H B Gilbody J. Phys. B At. Mol. Opt. Phys. 15 111 (1982)

  33. M B Shah, D S Elliott and H B Gilbody J. Phys. B At. Mol. Opt. Phys. 18 4245 (1985)

    Article  ADS  Google Scholar 

  34. R D DuBois and L H Toburen Phys. Rev. A 31 3603 (1985)

    Article  ADS  Google Scholar 

  35. P Lowdin Phys. Rev. 90 120 (1953)

    Article  ADS  Google Scholar 

  36. R Gayet, J Hanssen, A Martinez and R Rivarola Nucl. Instrum. Methods Phys. Res. B 86 158 (1994)

    Article  ADS  Google Scholar 

  37. R R Lewis Phys. Rev. A 14 1009 (1956)

    Google Scholar 

  38. I Mancev Phys. Rev. A 64 012708 (2001)

    Article  ADS  Google Scholar 

  39. Y D Wang, N Toshima and C D Lin Phys. Scr. T62 63 (1996)

    Article  ADS  Google Scholar 

  40. D Brandt Nucl. Instrum. Methods 214 93 (1983)

    Article  Google Scholar 

  41. Dz Belkic Phys. Scr. 40 610 (1989)

    Google Scholar 

  42. J Eichler Phys. Rev. A 23 498 (1981)

    Article  ADS  Google Scholar 

  43. V S Nikolaev, I S Dmitriev, L N Fateeva and Yu A Teplova, Sov. Phys. JETP 13 695 (1961)

  44. J R Macdonald and F W Martin Phys. Rev. A 4 1965 (1971)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author would like to express his gratitude to Professor C R Mandal for helpful discussions and a critical review of the manuscript. We gratefully acknowledge financial support from the Council of Scientific and Industrial Research (CSIR), New Delhi, India, under project number 03/1184/10/EMR-II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Purkait.

Appendix

Appendix

Here A, B, C and D in Eq. (13) of the main text are given by

$$ A = A_{1} y^{2} + 2y\left( {\beta_{1} A_{1} + A_{12} + A_{22} } \right) + A_{3} ,\quad B = B_{1} y^{2} + 2y\left( {\beta_{1} B_{1} + B_{12} + A_{22} } \right) + B_{3} $$
$$ C = C_{1} y^{2} + 2y\left( {\beta_{1} C_{1} + C_{12} + C_{22} } \right) + C_{3} ,\quad D = D_{1} y^{2} + 2y\left( {\beta_{1} D_{1} + D_{12} + D_{22} } \right) + D_{3} $$

where

$$ A_{1} = \left( {\lambda_{1} + \omega + \varepsilon_{i} } \right)^{2} + q^{2} ,\quad B_{1} = - 2\vec{k}_{i} \cdot \vec{q} - 2ik_{i} \left( {\lambda_{1} + \omega + \varepsilon_{i} } \right), $$
$$ C_{1} = 2\vec{k}_{f} \cdot \vec{q} - 2ik_{f} \left( {\lambda_{1} + \omega + \varepsilon_{i} } \right),\quad D_{1} = - 2\left( {\vec{k}_{i} .\vec{k}_{f} + k_{i} k_{f} } \right), $$
$$ A_{12} = \lambda_{1} \left\{ {\left( {\omega + \varepsilon_{i} } \right)^{2} + \beta_{1}^{2} + q^{2} } \right\},\quad B_{12} = - 2\vec{k}_{i} \cdot \vec{q}\lambda_{1} - 2ik_{i} \lambda_{1} \left( {\omega + \varepsilon_{i} } \right), $$
$$ C_{12} = 2\vec{k}_{f} \cdot \vec{q}\lambda_{1} - 2ik_{f} \lambda_{1} \left( {\omega + \varepsilon_{i} } \right),\quad D_{12} = - 2\lambda_{1} \left( {\vec{k}_{i} \cdot \vec{k}_{f} + k_{i} k_{f} } \right), $$
$$ A_{22} = \left( {\omega + \varepsilon_{i} } \right)Q_{1} ,\quad B_{22} = - ik_{i} Q_{1} ,\quad C_{22} = - ik_{f} Q_{1} ,\quad D_{22} = 0, $$
$$ A_{3} = Q_{2} \left\{ {\left( {\omega + \varepsilon_{i} + \beta_{1} } \right)^{2} + q^{2} } \right\},\quad B_{3} = - 2\vec{k}_{i} \cdot \vec{q}Q_{2} - 2ik_{i} Q_{2} \left( {\omega + \varepsilon_{i} + \beta_{1} } \right), $$
$$ C_{3} = 2\vec{k}_{f} \cdot \vec{q}Q_{2} - 2ik_{f} Q_{2} \left( {\omega + \varepsilon_{i} + \beta_{1} } \right),\quad D_{3} = - 2Q_{2} \left( {\vec{k}_{i} \cdot \vec{k}_{f} + k_{i} k_{f} } \right). $$

The term Q1 and Q2 can be explicitly written as

$$ Q_{1} = \left( {\lambda_{1}^{2} + \beta_{1}^{2} } \right),\quad Q_{2} = \left( {\lambda_{1} + \beta_{1} } \right)^{2} . $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jana, S., Purkait, M. Comparative study of single and double electron capture from atoms by fast bare ions. Indian J Phys 89, 641–647 (2015). https://doi.org/10.1007/s12648-014-0638-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-014-0638-8

Keywords

PACS No.

Navigation