Skip to main content
Log in

Effects of local hypothermia on neuronal cell apoptosis after intracerebral hemorrhage in rats

  • Published:
The journal of nutrition, health & aging

Abstract

Objectives

Intracerebral hemorrhage (ICH) is a devastating subtype of stroke that is characterized by significant morbidity and mortality. Thus far, there is no effective treatment option for spontaneous ICH. In this study, we aimed to investigate the effects of local hypothermia on brain injuries after ICH.

Measurements

Bacterial collagenase was used to induce ICH stroke in male Wistar rats. We assessed the effects of normothermia and 4 hours of local hypothermia (~33.2°C) initiated 1 hour after collagenase infusion on the neurological outcomes and brain water content at 1 and 3 days after ICH. The pathological changes of neuronal ultrastructure were examined with transmission electron microscopy. Furthermore, the expression levels of apoptotic molecules and matrix metalloproteinases-9 (MMP-9) were determined using western blotting and immunohistochemical staining.

Results

Local hypothermia tends to reduce neurological deficits compared with the normothermic group at day 3 after ICH. Transmission electron microscopy reveals that local hypothermia significantly improves the ultrastructural outcomes at 1 and 3 days after ICH. In addition, local hypothermia markedly reduces edema formation and the expression levels of MMP-9 and apoptotic signal.

Conclusion

These data suggest that local hypothermia induces a reduction in the brain edema and partly reduces neurological deficits along with marked inhibitory effects on MMP-9 and cell apoptosis after ICH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sacco S, Marini C, Toni D, Olivieri L, Carolei A (2009) Incidence and 10-Year Survival of Intracerebral Hemorrhage in a Population-Based Registry. Stroke 40:394–399.

    Article  PubMed  Google Scholar 

  2. Qureshi AI, Suri MF, Ostrow PT, Kim SH, Ali Z, Shatla AA, Guterman LR, Hopkins LN (2003) Apoptosis as a form of cell death in intracerebral hemorrhage. Neurosurgery 52:1041–1048.

    Article  PubMed  Google Scholar 

  3. Katsu M, Niizuma K, Yoshioka H, Okami N, Sakata H, Chan PH (2010) Hemoglobin-induced oxidative stress contributes to matrix metalloproteinase activation and blood-brain barrier dysfunction in vivo. J Cereb Blood Flow Metab 30:1939–1950.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Staykov D, Wagner I, Volbers B, Hauer EM, Doerfler A, Schwab S, Bardutzky J (2011) Natural course of perihemorrhagic edema after intracerebral hemorrhage. Stroke 42:2625–2629.

    Article  PubMed  Google Scholar 

  5. Clark DL, Colbourne F (2007) A simple method to induce focal brain hypothermia in rats. J Cereb Blood Flow Metab 27:115–122.

    Article  PubMed  Google Scholar 

  6. Li H, Wang D (2011) Mild hypothermia improves ischemic brain function via attenuating neuronal apoptosis. Brain Res 1368:59–64.

    Article  CAS  PubMed  Google Scholar 

  7. Doll H, Maegele M, Boh J, Störkel S, Kipfmueller F, Schaefer U, Angelov D, Wirth S, Truebel H (2010) Pharyngeal selective brain cooling is associated with reduced CNS cortical lesion after experimental traumatic brain injury in rats. J Neurotrauma 27:2245–2254.

    Article  PubMed  Google Scholar 

  8. Gao F, Wang S, Guo Y, Wang J, Lou M, Wu J, Ding M, Tian M, Zhang H (2010) Protective effects of repetitive transcranial magnetic stimulation in a rat model of transient cerebral ischaemia: a microPET study. Eur J Nucl Med Mol Imaging 37:954–961.

    Article  PubMed  Google Scholar 

  9. Liao W, Zhong J, Yu J, Xie J, Liu Y, Du L, Yang S, Liu P, Xu J, Wang J, Han Z, Han ZC (2009) Therapeutic benefit of human umbilical cord derived mesenchymal stromal cells in intracerebral hemorrhage rat: implications of anti-inflammation and angiogenesis. Cell Physiol Biochem 24:307–316.

    Article  CAS  PubMed  Google Scholar 

  10. Matthew Fingas, Mark Penner, Gergely Silasi, Frederick Colbourne (2009) Treatment of intracerebral hemorrhage in rats with 12 h, 3 days and 6 days of selective brain hypothermia. Experimental Neurology 219:156–162.

    Article  Google Scholar 

  11. Ma Q, Huang B, Khatibi N, Rolland W 2nd, Suzuki H, Zhang JH, Tang J (2011) PDGFR-α inhibition preserves blood-brain barrier after intracerebral hemorrhage. Ann Neurol 70:920–931.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Sunwoo YY, Park SI, Chung YA, Lee J, Park MS, Jang KS, Maeng LS, Jang DK, Im R, Jung YJ, Park SA, Kang ES, Kim MW, Han YM (2012) A Pilot Study for the Neuroprotective Effect of Gongjin-dan on Transient Middle Cerebral Artery Occlusion-Induced Ischemic Rat Brain. Evid Based Complement Alternat Med 2012:682720.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Cipolla MJ, Bishop N, Chan SL (2012) Effect of pregnancy on autoregulation of cerebral blood flow in anterior versus posterior cerebrum. Hypertension 60:705–711.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Wu H, Zhang Z, Li Y, Zhao R, Li H, Song Y, Qi J, Wang J (2010) Time course of upregulation of inflammatory mediators in the hemorrhagic brain in rats:correlation with brain edema. Neurochem Int 57:248–253.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Cui JJ, Wang D, Gao F, Li YR (2012) Effects of atorvastatin on pathological changes in brain tissue and plasma MMP-9 in rats with intracerebral hemorrhage. Cell Biochem Biophys 62:87–90.

    Article  CAS  PubMed  Google Scholar 

  16. Hwang CK, Chun HS (2012) Isoliquiritigenin isolated from licorice Glycyrrhiza uralensis prevents 6-hydroxydopamine-induced apoptosis in dopaminergic neurons. Biosci Biotechnol Biochem 76:536–543.

    Article  CAS  PubMed  Google Scholar 

  17. Xiao YY, Chang YT, Ran K, Liu JP (2011) Delayed preconditioning by sevoflurane elicits changes in the mitochondrial proteome in ischemia-reperfused rat hearts. Anesth Analg 113:224–232.

    Article  CAS  PubMed  Google Scholar 

  18. Xi G, Keep RF, Hoff JT (2006) Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol 5:53–63.

    Article  PubMed  Google Scholar 

  19. Rosell A, Ortega-Aznar A, Alvarez-Sabín J, Fernández-Cadenas I, Ribó M, Molina CA, Lo EH, Montaner J (2006) Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke. Stroke 37:1399–1406.

    Article  CAS  PubMed  Google Scholar 

  20. Wang J, Tsirka SE (2005) Contribution of extracellular proteolysis and microglia to intracerebral hemorrhage. Neurocrit Care 3:77–85.

    Article  CAS  PubMed  Google Scholar 

  21. Gu Z, Cui J, Brown S, Fridman R, Mobashery S, Strongin AY, Lipton SA (2005) A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. J Neurosci 25:6401–6408.

    Article  CAS  PubMed  Google Scholar 

  22. Xue M, Hollenberg MD, Yong VW (2006) Combination of thrombin and matrix metalloproteinase-9 exacerbates neurotoxicity in cell culture and intracerebral hemorrhage in mice. J Neurosci 26:10281–10291.

    Article  CAS  PubMed  Google Scholar 

  23. Walker EJ, Rosenberg GA (2009) TIMP-3 and MMP-3 contribute to delayed inflammation and hippocampal neuronal death following global ischemia. Exp Neurol 216:122–131.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Wagner KR, Beiler S, Beiler C, Kirkman J, Casey K, Robinson T, Larnard D, de Courten-Myers GM, Linke MJ, Zuccarello M (2006) Delayed profound local brain hypothermia markedly reduces interleukin-1beta gene expression and vasogenic edema development in a porcine model of intracerebral hemorrhage. Acta Neurochir Supp 96:177–182.

    Article  CAS  Google Scholar 

  25. Delgado P, Cuadrado E, Rosell A, Alvarez-Sabín J, Ortega-Aznar A, Hernández-Guillamón M, Penalba A, Molina CA, Montaner J (2008) Fas system activation in perihematomal areas after spontaneous intracerebral hemorrhage. Stroke 39:1730–1734.

    Article  CAS  PubMed  Google Scholar 

  26. Huang T, Solano J, He D, Loutfi M, Dietrich WD, Kuluz JW (2009) Traumatic injury activates MAP kinases in astrocytes: mechanisms of hypothermia and hyperthermia. J Neurotrauma 26:1535–1545.

    Article  PubMed  Google Scholar 

  27. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656

    Article  CAS  PubMed  Google Scholar 

  28. Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911.

    Article  CAS  PubMed  Google Scholar 

  29. Hüttemann M, Pecina P, Rainbolt M, Sanderson TH, Kagan VE, Samavati L, Doan JW, Lee I (2011) The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: From respiration to apoptosis. Mitochondrion 11:369–381.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Salvesen GS, Dixit VM (1997) Caspases intracellular signaling by proteolysis. Cell 91:443–446.

    Article  CAS  PubMed  Google Scholar 

  31. Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42.

    Article  CAS  PubMed  Google Scholar 

  32. Zou H, Li Y, Liu X, Wang X (1999) An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274:11549–11556.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Tang, Y., Li, L. et al. Effects of local hypothermia on neuronal cell apoptosis after intracerebral hemorrhage in rats. J Nutr Health Aging 19, 291–298 (2015). https://doi.org/10.1007/s12603-015-0469-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-015-0469-0

Key words

Navigation