Skip to main content

Advertisement

Log in

Role of Neurochemicals in the Interaction between the Microbiota and the Immune and the Nervous System of the Host Organism

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

This work is concerned with the role of evolutionary conserved substances, neurotransmitters, and neurohormones, within the complex framework of the microbial consortiumimmune systemnervous system axis in the human or animal organism. Although the operation of each of these systems per se is relatively well understood, their combined effects on the host organism still await further research. Drawing on recent research on host-produced and microbial low-molecular-weight neurochemicals such as biogenic amines, amino acids, and short-chain fatty acids (SCFAs), we suggest that these mediators form a part of a universal neurochemical “language.” It mediates the whole gamut of harmonious and disharmonious interactions between (a) the intestinal microbial consortium, (b) local and systemic immune cells, and (c) the central and peripheral nervous system. Importantly, the ongoing microbiota–host interactivity is bidirectional. We present evidence that a large number of microbially produced low-molecular-weight compounds are identical or homologous to mediators that are synthesized by immune or nervous cells and, therefore, can bind to the corresponding host receptors. In addition, microbial cells specifically respond to host-produced neuromediators/neurohormones because they have adapted to them during the course of many millions of years of microbiota–host coevolution. We emphasize that the terms “microbiota” and “microbial consortium” are to be used in the broadest sense, so as to include, apart from bacteria, also eukaryotic microorganisms. These are exemplified by the mycobiota whose role in the microbial consortiumimmune systemnervous system axis researchers are only beginning to elucidate. In light of the above, it is imperative to reform the current strategies of using probiotic microorganisms and their metabolites for treating and preventing dysbiosis-related diseases. The review demonstrates, in the example of novel probiotics (psychobiotics), that many target-oriented probiotic preparations produce important side effects on a wide variety of processes in the host organism. In particular, we should take into account probiotics’ capacity to produce mediators that can considerably modify the operation of the microecological, immune, and nervous system of the human organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Tyrosine is synthesized in the human organism from phenylalanine, an essential amino acid that must be contained in food.

  2. High dopamine concentration, conversely, causes vasoconstriction [72].

  3. 5НТ5А receptors inhibit, and several other types of serotonin receptors activate, the intracellular adenylate cyclase enzyme.

  4. Estradiol is the most important hormone of the estrogen group that also includes estrone and estriol.

References

  1. Abbott A (2016) Scientists bust the myth that our bodies have more bacteria than human cells. Nature. doi:10.1038/nature.2016.19136

    Google Scholar 

  2. El Aidy S, Dinan TG, Cryan JF (2015) Gut microbiota: the conductor in the orchestra of immune-neuroendocrine communication. Clin Ther 37:954–967

    Article  CAS  Google Scholar 

  3. Shenderov BA (2014) Microbial ecology and its role in promoting health. Metamorfozy (Russian) No. 5:72–80

    Google Scholar 

  4. Krishnan S, Alden N, Lee K (2015) Pathways and functions of gut metabolism impacting host physiology. Curr Opin Biotech 36:137–145

    Article  CAS  Google Scholar 

  5. Hevia A, Delgado S, Sanchez B, Margolles A (2015) Molecular players involved in the interaction between beneficial bacteria and the immune system. Front Microbiol. doi:10.3389/fmicb.2015.0185

    Google Scholar 

  6. Belkaid Y, Hand T (2014) Role of the microbiota in immunity and inflammation. Cell 157(1):121–141

    Article  CAS  Google Scholar 

  7. Li Q, Zhou JM (2016) The microbiota-gut-brain axis and its potential role in autism spectrum disorder. Neuroscience 324:131–139

    Article  CAS  Google Scholar 

  8. Kelly JR, Clarke G, Cryan JF, Dinan TG (2016) Brain-gut-microbiota axis: challenges for translation in psychiatry. Ann Epidemiol. doi:10.1016/j.annepidem.2016.02.008

    Google Scholar 

  9. Theordorou V, Eutamene H, Vergnolle N (2007) Modulation of neuroimmune axis and treatment of gastrointestinal diseases. Drug Discov Today 4(3):177–182

    Google Scholar 

  10. Dinan TG, Stanton C, Cryan JF (2013) Psychobiotics: a novel class of psychotropic. Biol Psychiat 74(10):720–726

    Article  CAS  Google Scholar 

  11. Steenbergen L, Sellaro R, van Hemert S, Bosch JA, Colzato LS (2015) A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav Immun. doi:10.1016/j.bbi.2015.04.003

    Google Scholar 

  12. Romijn AR, Rucklidge JJ (2015) Systematic review of evidence to support the theory of psychobiotics. Nutr Rev. doi:10.1093/nutrit/nuv025

    Google Scholar 

  13. Shenderov BA (2008) Functional nutrition and its role in preventing metabolic syndrome. DeLi Print (Russian), Moscow

    Google Scholar 

  14. Oleskin AV, Shenderov BA (2013) Biopolitical approach to rehabilitology: the potential role of microbial neurochemistry. J Restor Med Rehabil (Russian) No.1:60–67

    Google Scholar 

  15. Oleskin AV, Shenderov BA (2016) Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota. Microb Ecol Health D. doi:10.3402/mehd.v27.30971

    Google Scholar 

  16. Oleskin AV, El’-Registan GI, Shenderov BA (2016) Role of neuromediators in the functioning of the human microbiota: “business talks” among microorganisms and the microbiota-host dialogue. Microbiology 85(1):1–22

    Article  CAS  Google Scholar 

  17. Lyte M (1993) The role of microbial endocrinology in infectious disease. J Endocrinol 137:343–345

    Article  CAS  Google Scholar 

  18. Lyte M, Ernst S (1992) Catecholamine induced growth of gram negative bacteria. Life Sci 50:203–212

    Article  CAS  Google Scholar 

  19. Lyte M (2010) The microbial organ in the gut as a driver of homeostasis and disease. Med Hypotheses 74:634–638

    Article  Google Scholar 

  20. Lyte M (2011) Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. BioEssays 33:574–581

    Article  CAS  Google Scholar 

  21. Lyte M (2013) Microbial endocrinology and nutrition: a perspective on new mechanisms by which diet can influence gut-to brain-communication. Pharma Nutrition 1:35–39

    Article  CAS  Google Scholar 

  22. Lyte M (2016) Microbial endocrinology in the pathogenesis of infectious disease. Microbiol Spectrum 4(2): VMBF-0021–2015. doi: 10.1128/microbiolspec.VMBF-0021-2015

  23. Lyte M (2016) Microbial endocrinology: an ongoing personal journey. In: Lyte M (ed) Microbial endocrinology: interkingdom signaling in infectious disease and health. Springer, New York, pp 1–24. doi:10.1007/978-3-319-20215-0_1

    Google Scholar 

  24. Stilling RM, Bordenstein SR, Dinan TG, Cryan JF (2014) Friends with social benefits: host-microbe interactions as a driver of brain evolution and development? Front Cell Infect Microbiol 4. doi: 10.3389/fcimb.2014.00147

  25. Averina OV, Danilenko VN (2017) Human intestinal microbiota and its role in the development and functioning of the nervous system. Microbiology 86(1):1–19

    Article  CAS  Google Scholar 

  26. Shenderov BA (2016) The microbiota as an epigenetic control mechanism. Chapter 11. In: Nibali L, Henderson B (eds) The human microbiota and chronic disease: dysbiosis as a cause of human pathology, 1st edn. J. Wiley & Sons, pp 179–197

  27. Shenderov BA (2013) Targets and effects of short-chain fatty acids. Sovrem Med Nauka (Russian) No.1-2:21–50

    Google Scholar 

  28. Freestone PP, Lyte M (2008) Microbial endocrinology: experimental design issues in the study of interkingdom signaling in infectious disease. Adv Appl Microbiol 64:75–108

    Article  CAS  Google Scholar 

  29. Freestone PPE, Haigh RD, Lyte M (2007) Blockade of catecholamine-induced growth by adrenergic and dopaminergic receptor antagonists in Escherichia coli O157:H7, Salmonella enterica and Yersinia enterocolitica. BMC Microbiol 7:8

    Article  CAS  Google Scholar 

  30. Anuchin AM, Chuvelev DI, Kirovskaya TA, Oleskin AV (2008) Effect of neuromediator monoamines on the growth characteristics of Escherichia coli K-12. Microbiology 77(6):758–765

    Article  CAS  Google Scholar 

  31. Kinney KS, Austin CE, Morton DS, Sonnenfeld G (1999) Catecholamine enhancement of Aeromonas hydrophila growth. Microb Pathogenesis 25:85–89

    Article  Google Scholar 

  32. Shpakov AO (2009) Bacterial non-peptide signal molecules of the QS type. Microbiology 78(2):163–175

    Article  CAS  Google Scholar 

  33. Verbrugge E, Boyen F, Gaastra W, Bekhuis L, Leyman B, Van Paris A, Haesebrouck F, Pasmans F (2012) The complex interplay between stress and bacterial infections in animals. Veter Microbiol 155:115–127

    Article  Google Scholar 

  34. Cogan TA, Thoma AO, Rees LE, Taylor AH, Jepson MA, Williams PH, Ketley J, Humphrey TJ (2007) Norepinephrine increases the pathogenic potential of Campylobacter jejuni. Gut 56:1060–1065

    Article  CAS  Google Scholar 

  35. Malikina KD, Shishov VA, Chuvelev DI, Kudrin VS, Oleskin AV (2010) Regulatory role of neuromediator amines in Saccharomyces cerevisiae cells. Appl Biochem Micro+ 46(6):672–677

    CAS  Google Scholar 

  36. Oleskin AV, Shishov VI, Malikina KD (2010) Symbiotic biofilms and brain neurochemistry. Nova Science Publishers, Hauppauge (New York)

    Google Scholar 

  37. Oleskin AV, Kirovskaya TA, Botvinko IV, Lysak LV (1998) Effect of serotonin (5-hydroxytryptamine) on the growth and differentiation of microorganisms. Microbiology 67(3):306–311

    Google Scholar 

  38. Strakhovskaya MG, Ivanova EV, GYA F (1993) Stimulatory influence of serotonin on the growth of the yeast Candida guillermondii and the bacterium Streptococcus faecalis. Microbiology 62:46–49

    CAS  Google Scholar 

  39. Rahman MA, Azuma Y, Fukunaga H, Murakami T, Sugi K, Fukushi H, Miura K, Suzuki H, Shirai M (2005) Serotonin and melatonin, neurohormones for homeostasis, as novel inhibitors of infection by the intracellular parasite Chlamydia. J Antimicrob Chemoth 56:861–868

    Article  CAS  Google Scholar 

  40. Roshchina VV (2010) Evolutionary considerations of neurotransmitters in microbial, plant, and animal cells. In: Lyte M, Freestone PPE (eds) Microbial endocrinology: interkingdom signaling in infectious disease and health. Springer, New York, pp 17–52

    Chapter  Google Scholar 

  41. Reyes-García MG, Hernández-Hernández F, García-Tamayo F (2012) Gamma-aminobutyric acid (GABA) increases in vitro germ-tube formation and phospholipase B1 mRNA expression in Candida albicans. Mycoscience 53:36–39

    Article  CAS  Google Scholar 

  42. Vakhitov TY, Sitkin SI (2014) The concept of superorganism in biology and medicine. Exp Klin Gastroenterol 107(7):72–85

    Google Scholar 

  43. Neish AS (2009) Microbes in gastrointestinal health and disease. Gastroenterology 136(1):65–80

    Article  Google Scholar 

  44. Dubynin VA, Kamenskii AA, Sapin MR, Sivoglazov VN (2003) Regulatory systems of the human organism. Drofa, Moscow (Russian)

    Google Scholar 

  45. Orlova E, Paschenkov M, Davydovskaya M, Klimova S, Khozova A, Mugutdinova B, Boiko A (2012) Role of dopamine in regulating the interaction of the nervous and immune system in multiple sclerosis. Zh Nevrol Psikhiatr 112(2):34–40

    CAS  Google Scholar 

  46. Cosentino M, Marino F (2012) Nerve-driven immunity. Springer, Vienna

    Google Scholar 

  47. Cosentino M, Marino F, Kustrimovic N (2013) Endogenous catecholamines in immune cells: discovery, functions and clinical potential as therapeutic targets. Brain Immune Trends. http://brainimmune.com/endogenous-catecholamines-in-immune-cells-discovery-functions-and-clinical-potential-as-pharmacotherapeutic-targets-3

  48. Levite M (2016) Dopamine and T cells: dopamine receptors and potent effects on T cells, dopamine production in T cells, and abnormalities in the dopaminergic system in T cells in autoimmune, neurological and psychiatric diseases. Acta Physiol 216(1):42–89

    Article  CAS  Google Scholar 

  49. Zampeli E, Tiligada E (2009) The role of histamine H4 receptor in immune and inflammatory disorders. Brit J Pharmacol 157(1):24–33

    Article  CAS  Google Scholar 

  50. Ley S, Weigert A, Brüne B (2010) Neuromediators in inflammation—a macrophage/nerve connection. Immunology 215:674–684

    CAS  Google Scholar 

  51. O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF (2015) Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 277:32–48. doi:10.1016/j.bbr.2014.07.027

    Article  CAS  Google Scholar 

  52. Arreola R, Becerril-Villanueva E, Cruz-Fuentes C, Velasco-Velazquez MA, Garces-Alvarez ME, Hurtado-Alvarado G, Quintero-Fabian S, Pavon L (2015) Immunomodulatory effects mediated by serotonin. J Immunol Res 2015. ID. 354957

  53. Gao C, Major A, Rendon D, Lugo M, Jackson V, Shi Z, Mori-Akiyama Y, Versalovic J (2015) Histamine H2 receptor-mediated suppression of intestinal inflammation by probiotic Lactobacillus reuteri. M Bio 6(6):e01358–e01315

    CAS  Google Scholar 

  54. Shajib MS, Khan WI (2015) The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiol 213(3):561–574

    Article  CAS  Google Scholar 

  55. Satriano J (2004) Arginine pathways and the inflammatory response: interregulation of nitric oxide and polyamines: review article. Amino Acids 26(4):321–329

    Article  CAS  Google Scholar 

  56. Uranchimeg D, Kim JH, Kim JY, Lee WT, Park KA, Batbaatar G, Tundevrentsen S, Amgalanbaatar D, Lee JE (2010) Recovered changes in the spleen by agmatine treatment after transient cerebral ischemia. Anatomy Cell Biol 43(1):44–53

    Article  CAS  Google Scholar 

  57. Ahn SK, Hong S, Park YM, Choi JY, Lee WT, Park KA, Lee JE (2012) Protective effects of agmatine on lipopolysaccharide-injured microglia and inducible nitric oxide synthase activity. Life Sci 91(25):1345–1350

    Article  CAS  Google Scholar 

  58. Chai J, Luo L, Hou F, Fan X, Yu J, Ma W et al (2016) Agmatine reduces lipopolysaccharide-mediated oxidant response via activating PI3K/Akt pathway and up-regulating Nrf2 and HO-1 expression in macrophages. PLoS One 11(9):e0163634. doi:10.1371/journal.pone.0163634

    Article  CAS  Google Scholar 

  59. Auteri M, Zizzo MG, Serio R (2015) GABA and GABA receptors in the gastrointestinal tract: from motility to inflammation. Pharma Res 93:11–21

    Article  CAS  Google Scholar 

  60. Prud’homme GJ, Glinka Y, Wang Q (2015) Immunological GABAergic interactions and therapeutic applications in autoimmune diseases. Autoimmun Rev 14(11):1048–1056

    Article  CAS  Google Scholar 

  61. Ganor Y, Levite M (2014) The neurotransmitter glutamate and human T cells: glutamate receptors and glutamate-induced direct and potent effects on normal human T cells, cancerous human leukemia and lymphoma T cells, and autoimmune human T cells. J Neural Transm 121(8):983–1006

    Article  CAS  Google Scholar 

  62. Verbeke KA, Boobis AR, Chiodini A, Edwards CA, Franck A, Kleerebezem M, Nauta A, Raes J, van Tol EAF, Tuohy KM (2015) Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutr Res Rev 28:42–66

    Article  CAS  Google Scholar 

  63. Correa RO, Fachi JL, Vieira SFT, Vinolo MA (2016) Regulation of immune cell function by short–chain fatty acids. Clin Transl Immunol. doi:10.1038/ctl.2016.17

    Google Scholar 

  64. Clarke MB, Hughes DT, Zhu C, Boedeker EC, Sperandio V (2006) The QseC sensor kinase: a bacterial adrenergic receptor. P Natl Acad Sci USA 103:10420–10425

    Article  CAS  Google Scholar 

  65. Hughes DT, Clarke MB, Yamamoto K, Rasko DA, Sperandio V (2009) The QseC adrenergic signaling cascade in enterohemorrhagic E. coli (EHEC). PLoS Pathog 5:e1000553

    Article  CAS  Google Scholar 

  66. Tsavkelova EA, Botvinko IV, Kudrin VS, Oleskin AV (2000) Detection of neuromediator amines in microorganisms by high-performance liquid chromatography. Dokl Akad Nauk 372:840–842

    CAS  Google Scholar 

  67. Shishov VA, Kirovskaya TA, Kudrin VS, Oleskin AV (2009) Amine neuromediators, their precursors, and oxidation products in the culture of Escherichia coli K-12. Appl Biochem Micro+ 45(5):494–497

    Article  CAS  Google Scholar 

  68. Eldrup E (2004) Significance and origin of DOPA, DOPAC and dopamine-sulfate in plasma, tissue and cerebrospinal fluid. Dan Med Bull 31:34–62

    Google Scholar 

  69. Özogul F (2004) Production of biogenic amines by Morganella morganii, Klebsiella pneumonia and Hafnia alvii using a rapid HPLC method. Eur Food Res Technol 219:465–469

    Article  CAS  Google Scholar 

  70. Oleskin AV, Zhilenkova OG, Shenderov BA, Amerhanova AM, Kudrin VS, Klodt PM (2014) Lactic-acid bacteria supplement fermented dairy products with human behavior-modifying neuroactive compounds. J Pharm Nutrit Sci 4P:199–206

    Article  Google Scholar 

  71. Oleskin AV, Zhilenkova OG, Shenderov BA, Amerhanova AM, Kudrin VS, Klodt PM (2014) Starter cultures of lactobacilli as producers of neuromediators such as biogenic amines and amino acids. Mol Prom (Russian) No.9:42–43

    Google Scholar 

  72. Bronwen JB, Knights KM (2009) Pharmacology for health professionals, 2nd edn. Elsevier, Australia, p 192

    Google Scholar 

  73. de Backer D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, Brasseur A, Defrance P, Gottignies P, Vincent JL (2010) Comparison of dopamine and norepinephrine in the treatment of shock. New Engl J Med 362(9):779–789. doi:10.1056/NEJMoa09071

    Article  Google Scholar 

  74. Grandy DK, Miller GM, Li JX (2016) "TAARgeting addiction"-the Alamo bears witness to another revolution: an overview of the plenary symposium of the 2015 behavior, biology and chemistry conference. Drug Alcohol Depen 159:9–16

    Article  Google Scholar 

  75. Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning or incentive salience? Brain Res Rev 28(3):309–369

    Article  CAS  Google Scholar 

  76. Arias-Carrión O, Pöppel E (2007) Dopamine, learning and reward-seeking behavior. Acta Neurobiol Exp 67(4):481–488

    Google Scholar 

  77. Jiang J, Qiu Y, Peng Y, Wang J (2006) Immunoregulatory role of endogenous catecholamines synthesized by immune cells. Acta Physiol Sinica 58(4):309–317

    CAS  Google Scholar 

  78. Cosentino M, Fietta AM, Ferrari M, Rasini E, Bombelli R, Carcano E, Saporiti F, Meloni F, Marino F, Lecchini S (2007) Human CD4+ CD25+ regulatory T cells selectively express tyrosine hydroxylase and contain endogenous catecholamines subserving an autocrine/paracrine inhibitory functional loop. Blood 109(2):632–642

    Article  CAS  Google Scholar 

  79. Wu J, Zhang R, Tang N, Gong Z, Zhou J, Chen Y, Chen K, Cai W (2015) Dopamine inhibits the function of Gr-1+ CD115+ myeloid-derived suppressor cells through D1-like receptors and enhances anti-tumor immunity. J Leukoc Biol 97(1):191–200

    Article  CAS  Google Scholar 

  80. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161:264–276

    Article  CAS  Google Scholar 

  81. Mayr A, Hinterberger G, Dierich MP, Lass-Flörl C (2005) Interaction of serotonin with Candida albicans selectively attenuates fungal virulence in vitro. Int J Antimicrob Agents 26:335–337

    Article  CAS  Google Scholar 

  82. Shenderov BA (1998) Medical microbial ecology and functional nutrition. V.2. Social and ecological consequences of the imbalance in the microbial ecology of humans and animals. Grant (Russian), Moscow

    Google Scholar 

  83. Rook GAW, Raison CL, Lowry CA (2013) Can we vaccinate against depression? Drug Discov Today 17(9/10):451–458

    Google Scholar 

  84. McPherson RA, Pincus MR (2011) Henry’s clinical diagnosis and management by laboratory methods. Elsevier Saunders, Philadelphia

    Google Scholar 

  85. Ye JZX, Fang Z, Xie G, Liao N, Shu J, Liu D (2012) Determination of biogenic amines in semi-dry and semi-sweet Chinese rice wine from the Shaoxing region. Food Control 28:151–156

    Article  CAS  Google Scholar 

  86. Knecht LD, O’Connor GO, Mittal R, Liu XZ, Daftarian P, Deo SK, Daunert S (2016) Serotonin activates bacterial quorum sensing and enhances the virulence of Pseudomonas aeruginosa in the host. EBioMedicine 9:161–169. doi:10.1016/j.ebiom.2016.05.037

    Article  Google Scholar 

  87. Williams BB, Van Benschoten AH, Cimermancic P, Donia MS, Zimmermann M, Taketani M, Ishihara A, Kashyap PC, Fraser JS, Fischbach MA (2014) Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe 16:495–503

    Article  CAS  Google Scholar 

  88. Hannon J, Hoyer D (2008) Molecular biology of 5-HT receptors. Behav Brain Res 195(1):198–213. doi:10.1016/j.bbr.2008.03.020

    Article  CAS  Google Scholar 

  89. Walther DJ, Peter JU, Winter S, Holtje M, Paulmann N, Grohmann M, Vowinckel J, Alamo-Bethencourt V, Wilhelm CS, Ahnert-Hilger G, Bader M (2003) Serotonylation of small GTPases is a signal transduction pathway that triggers platelet alpha-granule release. Cell 115(7):851–862

    Article  CAS  Google Scholar 

  90. Paulmann N, Grohmann M, Voigt JP, Bert B, Vowinckel J, Bader M, Skelin M, Jevsek M, Fink H, Rupnik M, Walther DJ (2009) Intracellular serotonin modulates insulin secretion from pancreatic beta-cells by protein serotonylation. PLoS Biol 7(10):e1000229. doi:10.1371/journal.pbio.1000229

    Article  CAS  Google Scholar 

  91. McGuire MMT (1982) Social dominance relationships in male vervet monkeys. A possible model for the study of dominance relationships in human political systems. Int Polit Sci Rev 3(1):11–32

    Article  Google Scholar 

  92. Raleigh MJ, McGuire MT (1994) Serotonin, aggression, and violence in vervet monkeys. In: Masters RD, McGuire MT (eds) The neurotransmitter revolution. Serotonin, social behavior and the law. Southern Illinois University Press, Carbondale, pp. 129–145

    Google Scholar 

  93. Masters RD (1994) Why study serotonin, social behavior and the law? In: Masters RD, McGuire MT (eds) The neurotransmitter revolution. Serotonin, social behavior and the law. Southern Illinois University Press, Carbondale, pp. 3–16

    Google Scholar 

  94. Kravitz EA (1988) Hormonal control of behavior: amines and the biasing of behavioral output in lobsters. Science 241(4874):1775–1781

    Article  CAS  Google Scholar 

  95. O’Connell PJ, Wang X, Leon-Ponte M, Griffiths C, Pingl SC, Ahern GP (2006) A novel form of immune signaling revealed by transmission of the inflammatory mediator serotonin between dendritic cells and T cells. Blood 107(3):1010–1017

    Article  CAS  Google Scholar 

  96. Leon-Ponte M, Ahern GP, O’Connell PJ (2007) Serotonin provides an accessory signal to enhance T-cell activation by signaling through the 5-HT7 receptor. Blood 109(8):3139–3146

    Article  CAS  Google Scholar 

  97. Marieb E (2001) Human anatomy and physiology. Benjamin Cummings, San Fransisco

    Google Scholar 

  98. Halász A, Baráth Á, Simon-Sarkadi L, Holzapfel W (1994) Biogenic amines and their production by microorganisms in food. Trends Food Sci Tech 5:42–49

    Article  Google Scholar 

  99. Ladero V, Linares DM, Fernandez M, Alvarez MA (2008) Real time detection of histamine-producing lactic acid bacteria in cheese: relation with histamine content. Food Res Intern 41:1015–1019

    Article  CAS  Google Scholar 

  100. Lin CS, Tsai H-C, Lin C-M, Huang C-Y, Kung H-F, Tsai YH (2014) Histamine content and histamine-forming bacteria in mahi-mahi (Coryphaea hippurus) fillets and dried products. Food Control 42:65–171

    Article  CAS  Google Scholar 

  101. Jayarajah CN, Skelley AM, Fortner AD, Mathies RA (2007) Analysis of neuroactive amines in fermented beverages using a portable microchip capillary electrophoresis system. Anal Chem 79:8162–8169

    Article  CAS  Google Scholar 

  102. Gardini F, Rossi F, Rizotti L, Torriani S, Grazia L, Chiavari C, Coloretti F, Tabanelli G (2012) Role of Streptococcus thermophilus PRI60 in histamine accumulation in cheese. Int Dairy J 27:71–76

    Article  CAS  Google Scholar 

  103. Devalia JL, Grady D, Harmanyeri Y, Tabaqchali S, Davies RJ (1989) Histamine synthesis by respiratory tract micro-organisms: possible role in pathogenicity. J Clin Pathol 42:516–522

    Article  CAS  Google Scholar 

  104. Voropaeva EA (2002) Antibiotic resistance and histamine production of bacteria isolated from the pharynx of children with bronchial asthma. Antibiot Khimioterap (Russian) No.3:19–23

  105. Panula P, Chazot PL, Cowart M et al (2015) International Union of Basic and Clinical Pharmacology. XCVIII Histamine Receptors Pharmacol Rev 67(3):601–655. doi:10.1124/pr.114.010249

    CAS  Google Scholar 

  106. Wouters MM, Vicario M, Santos J (2015) The role of mast cells in functional GI disorders. Gut 65:155–168. doi:10.1136/gutjnl-2015-309151

    Article  CAS  Google Scholar 

  107. White JM, Rumbold GR (1988) Behavioural effects of histamine and its antagonists: a review. Psychopharmacology 95(1):1–14. doi:10.1007/bf00212757

    Article  CAS  Google Scholar 

  108. Wall R, Cryan JF, Ross RP, Fitzgerald GF, Dinan TG, Stanton C (2014) Bacterial neuroactive compounds produced by probiotics. Adv Exp Med Biol 817:221–239

    Article  CAS  Google Scholar 

  109. Platt B, Riedel G (2011) The cholinergic system, EEG and sleep. Behav Brain Res 221(2):499–504. doi:10.1016/j.bbr.2011.01.017

    Article  CAS  Google Scholar 

  110. Kellogg DL, Zhao JL, Coey U, Green JV (2005) Acetylcholine-induced vasodilation is mediated by nitric oxide and prostaglandins in human skin. J Appl Physiol 98(2):629–632. doi:10.1152/japplphysiol.00728.2004

    Article  CAS  Google Scholar 

  111. Andersson U, Tracey KJ (2012) Neural reflexes in inflammation and immunity. J Exp Med 209(6):1057–1068

    Article  CAS  Google Scholar 

  112. Piletz JE, Aricioglu F, Cheng JT, Fairbanks CA, Gilad VH, Haenisch B, Halaris A, Hong S, Lee JE, Li J, Liu P, Molderings GJ, Rodrigues AL, Satriano J, Seong GJ, Wilcox G, Wu N, Gilad GM (2013) Agmatine: clinical applications after 100 years in translation. Drug Discov Today 18(17–18):880–893. doi:10.1016/j.drudis.2013.05.017

    Article  CAS  Google Scholar 

  113. Budrene EO, Berg HC (2002) Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376:49–53

    Article  Google Scholar 

  114. Mittal N, Budrene EO, Brenner MP, Van Oudenaarden A (2003) Motility of Escherichia coli cells in clusters formed by chemotactic aggregation. P Natl Acad Sci U SA 100:13259–13263

    Article  CAS  Google Scholar 

  115. Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C (2012) γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 113(2):411–417

    Article  CAS  Google Scholar 

  116. Yunes RA, Poluektova RU, Dyachkova MS, Klimina KM, Kovtun AS, Averina OV, Orlova VS, Danilenko VN (2016) GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota. Anaerobe 42:1–8. doi:10.1016/j.anaerobe.2016.10.011

    Article  CAS  Google Scholar 

  117. Vakhitov TY, Yashina OY, Petrov LN, Korolyuk AM (2000) Study of the effect of a growth autostimulator of Escherichia coli M-17 (preparation Aktoflor) on the growth of pure and mixed bacterial cultures. Zh Mikrob (Russian) 3:20–24

  118. Babin VN, Domaradsky IV, Dubinin AV, Kondrakova OA (1994) Biochemical and molecular aspects of the symbiosis of the human being and the microflora. Ros Khim Zh (Russian) 38:66–78

  119. Jin Z, Mendu SK, Birnir B (2013) GABA is an effective immunomodulatory molecule. Amino Acids 45(1):87–94

    Article  CAS  Google Scholar 

  120. Dann S, Eaves-Pyles T, Peniche A, Choudhury B, Feng H, Savidge T (2014) Microbiota-derived GABA exacerbates Clostridium difficili-associated intestinal inflammation and suppresses development of protective immunity (MPF1P.768). J Immunol 192(1):66–67

    Google Scholar 

  121. Van den Eynden J, Ali SS, Horwood N, Carmans S, Brone B, Hellings N, Steels P, Harvey RJ, Rigo JM (2009) Glycine and glycine receptor signalling in non-neuronal cells. Front Mol Neurosci 2:9. doi:10.3389/neuro.02.009.2009

    Article  CAS  Google Scholar 

  122. Rausch-Fan X, Ulm C, Jensen-Jarolim E, Schedle A, Boltz-Nitulescu G, Rausch WD, Matejka M (2005) Interleukin-1beta-induced prostaglandin E2 production by human gingival fibroblasts is upregulated by glycine. J Periodontol 76(7):1182–1188

    Article  CAS  Google Scholar 

  123. Hansen AM, Caspi RR (2010) Glutamate joins the ranks of immunomodulators. Nat Med 16(8):856–858

    Article  CAS  Google Scholar 

  124. El Aidy S, Stilling RM, Dinan TG, Cryan JF (2016) Microbiome to brain: unravelling the multidirectional axes of communication. In: Lyte M (ed) Microbial endocrinology: interkingdom signaling in infectious disease and health. Advances in experimental medicine and biology, vol 874. Springer International Publishing AG, USA, pp 301–336. doi:10.1007/078-3-3-319-20215_15

    Google Scholar 

  125. Erofeev NP, Radchenko VG, Seliverstov PV (2012) Clinical physiology of the colon. In: Mechanism of action of short-chain fatty acids in health and disease. Saint-Petersburg, Forte-Print (Russian)

    Google Scholar 

  126. Hamer HM, Jonkers D, Venema K, Vanhout VS, Troost EJ, Brummer R-J (2008) Review article: the role of butyrate on colon function. Aliment Pharm Ther 27:104–119

    Article  CAS  Google Scholar 

  127. MacFabe DF (2012) Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders. Microb Ecol Health Dis. doi:10.3402/mehd.v.23i0.19260

    Google Scholar 

  128. Meimandipour A, Shuhaimi M, Soleimani AF, Azhar K, Hair-Bejo M, Kabeir BM, Javanmard A, Anas M, Yazid AM (2010) Selected microbial groups and short-chain fatty acid profile in a stimulated chicken cecum supplemented with two strains of Lactobacillus. Poult Sci 89:470–476

    Article  CAS  Google Scholar 

  129. Duncan SH, Holtrop G, Lobley GE, Calder AG, Stewart CS, Flint HJ (2004) Contribution of acetate to butyrate formation by human faecal bacteria. Br J Nutr 91(6):915–923

    Article  CAS  Google Scholar 

  130. Canani RB, Di Costanzo M, Leone L, Pedata M, Meli R, Calignano A (2011) Potential beneficial effects of butyrate in intestinal and extra-intestinal diseases. World J Gastroenterol 17(12):1519–1528

    Article  CAS  Google Scholar 

  131. Raqib R, Sarker P, Bergman P, Ara G, Lindh M, Sack DA, Islam KMN, Gudmundsson GH, Andersson J, Agerberth B (2006) Improved outcome in shigellosis associated with butyrate induction of an endogenous peptide antibiotic. P Nat Acad Sci USA 103(24):9178–9183

    Article  CAS  Google Scholar 

  132. Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JT, Dinan TG (2014) Gut microbiota: the neglected endocrine organ. Mol Endocrinol 28:1221–1238

    Article  CAS  Google Scholar 

  133. Golovenko OV, Khalif AO, Golovenko AO (2011) Role of butyric acid in treating the organic and functional diseases of the colon. Klin Pers Gastroenter Hepatol (Russian) 3:20–29

    Google Scholar 

  134. Vinolo MA, Rodrigues HG, Nachbar RT, Curi R (2011) Regulation of inflammation by short chain fatty acids. Nutrients 3(10):658–676

    Google Scholar 

  135. Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S, Kobayashi M, Hirasawa A, Tsujimoto G (2011) Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G-protein-coupled receptor 41 (GPR41). P Nat Acad Sci USA 108:8030–8035. doi:10.1073/pnas.1016088108

    Article  CAS  Google Scholar 

  136. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble FM (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61(2):364–371

    Article  CAS  Google Scholar 

  137. Bienenstock J, Collins S (2010) 99th Dahlem Conference on infection, inflammation and chronic inflammatory disorders: psychoneuroimmunology and intestinal microbiota: clinical observations and basic mechanisms. Clin Exp Immunol 160(1):85–91

    Article  CAS  Google Scholar 

  138. Schroeder FA, Lin CL, Crusio WE, Akbarian S (2007) Antidepressant–like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol Psychiatry 62(1):55–64

    Article  CAS  Google Scholar 

  139. Shultz SR, MacFabe DF, Martin S et al (2009) Intercerebroventricular injections of the enteric bacterial metabolic product propionic acid impair cognition and sensorimotor ability in the long-Evans rat: further development of a rodent model of autism. Behav Brain Res 200:33–41

    Article  Google Scholar 

  140. Cherbut C (2004) Effects of short-chain fatty acids on gastrointestinal motility. In: Cummings JY, Rombeau JL, Sakata T (eds) Physiological and clinical aspects of short-chain fatty acids. University Press, Cambridge, рр. 191–208

  141. Beloborodova NV (2012) Integration of human metabolism and the microbiome in critical conditions. Obsch Reanimatol (Russian) 8(4):42–54

    Article  Google Scholar 

  142. Tazoe H, Otomo Y, Kaji I, Tanaka R, Karaki SI, Kuwahara A (2008) Roles of short-chain fatty acids receptors, GPR41 and GPR43 in colonic functions. J Physiol Pharmacol 59(Suppl 2):251–262

    Google Scholar 

  143. Soret R, Chevalier J, De Coppet P, Poupeau G, Derkinderen P, Segain JP, Neunlist M (2010) Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology 138(5):1772–1782

    Article  CAS  Google Scholar 

  144. Vahoutvin SA, Troost FJ, Kikens TO et al (2009) The effects of butyrate enemas on visceral perception in healthy volunteers. Neurogastroenterol Motility 21(9):952–976

    Article  CAS  Google Scholar 

  145. Faith JJ, Ahern PP, Ridaura VK, Cheng J, Gordon JI (2014) Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice. Sci Transl Med. doi:10.1126/scitranslmed.30008051

    Google Scholar 

  146. Rogovsky VS (2015) Mechanism of immune tolerance in health and tumor disease. Ros Immunol Zh (Russian) 9(2):171–185

  147. Lyte M, Freestone P (2009) Microbial endocrinology comes of age. Microbe 4(4):169–176

    Google Scholar 

  148. Siragusa S, De Angelis M, Di Cagno R, Rizzello CG, Coda R, Gobbetti M (2007) Synthesis of γ-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl Environ Microb 73:7283–7290

    Article  CAS  Google Scholar 

  149. Liao W-C, Wang C-Y, Shyu Y-T, Yu R-C, Ho K-C (2013) Influence of preprocessing methods and fermentation of adzuki beans on γ-aminobutyric acid (GABA) accumulation by lactic acid bacteria. J Funct Foods 5:1108–1111

    Article  CAS  Google Scholar 

  150. Lee B-J, Kim J-S, Kang YM, Lim J-H, Kim Y-M, Lee M-S, Jeong M-H, Ahn C-B, Je J-Y (2010) Antioxidant activity and γ-aminobutyric acid (GABA) content in sea tangle fermented by Lactobacillus brevis BJ20 isolated from traditional fermented foods. Food Chem 122:271–276

    Article  CAS  Google Scholar 

  151. Lyte M, Frank CD, Green BT (1996) Production of an autoinducer of growth by norepinephrine-cultured Escherichia coli O157:H7. FEMS Microbiol Lett 139(2–3):155–159

    Article  CAS  Google Scholar 

  152. Shamsuddin D, Tuazon CU, Levy C, Curtin J (1982) Bacillus cereus panophthalmitis: source of the organism. Rev Infect Dis 4(1):97–10

    Article  CAS  Google Scholar 

  153. Kaper JB, Sperandio V (2005) Bacterial cell-to-cell signaling in the gastrointestinal tract. Infect Immun 73(6):3197–3209

    Article  CAS  Google Scholar 

  154. Idova GV, Alperina EL, Cheido MA (2012) Contribution of brain dopamine, serotonin and opioid receptors in the mechanisms of neuroimmune modulation. Evidence from pharmacological analysis. Int Immunopharmacol 12:618–625

    Article  CAS  Google Scholar 

  155. Oleskin AV (2016) Network structures, social organization of microorganisms, and microbiome-host interactivity. J Restor Med Rehabil (Russian) No. 1:29–36

    Google Scholar 

  156. Oleskin AV, Rogovsky VS (2017) Role of biogenic amines in the interaction between the microbiota and the nervous and the immune system of the host organism. J Restor Med Rehabil No. 1 In press (Russian)

  157. Shapiro H, Thaiss CA, Levy M, Elinav E (2014) The cross talk between microbiota and the immune system: metabolites take center stage. Curr Op Immun 30:54–62

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Oleskin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

This manuscript is submitted by invitation from the Editor-In-Chief of Probiotics and Antimicrobial Proteins

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oleskin, A.V., Shenderov, B.A. & Rogovsky, V.S. Role of Neurochemicals in the Interaction between the Microbiota and the Immune and the Nervous System of the Host Organism. Probiotics & Antimicro. Prot. 9, 215–234 (2017). https://doi.org/10.1007/s12602-017-9262-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-017-9262-1

Keywords

Navigation