Skip to main content
Log in

Physiological Characteristics and Related Biochemical Parameters of Snow Algae from King George Island, Antarctica

  • Article
  • Published:
Ocean Science Journal Aims and scope Submit manuscript

Abstract

Red and green snow caused by snow algal blooms is common on glaciers and snowfields worldwide. Reddish and greenish snow samples containing algae were collected at the vicinity of penguin rockeries on King George Island (62°13′S, 58°47′W, near the King Sejong Station), Antarctica in February 2017 to investigate their physiology. Eight pigments and six fatty acids were detected from the samples. No difference in pigment and fatty acid (FA) composition was found between reddish and greenish snow samples. In contrast, spectral profiling and mycosporine-like amino acids (MAAs) were different between reddish and greenish snow. Particularly in greenish snow, a high absorbance between 450–600 nm was observed. The average MAA concentration was 316.0 μg g-1 in greenish snow, which was higher than that of reddish snow (278.2 μg g-1). The MAA to Particulate organic carbon (POC) ratio (mg (g C)-1) for reddish snow (6.2 mg (g C)-1) was higher than that of greenish snow (2.6 mg (g C)-1). These results suggest that reddish and greenish snow are considered to be the same species based on pigment and FA composition. Compared with photoprotective pigments, MAAs offer snow algae a more effective photoprotection strategy to promote tolerance of natural levels of ultraviolet radiation (UVR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlgren G, Gustafsson I-B, Boberg M (1992) Fatty acid content and chemical composition of freshwater microalgae. J Phycol 28:37–50

    Article  Google Scholar 

  • Barlow RG,Mantoura RFC, Gough MA, Fileman TW (1993) Pigment signatures of the phytoplankton composition in the northeastern Atlantic during the 1990 spring bloom. Deep-Sea Res Pt II 40(1):459–477

    Article  Google Scholar 

  • Bidigare RR, Ondrusek ME, Kennicutt II,MC, Iturriaga R, Harvey HR, Hoham RW, Macko SA (1993) Evidence for a photoprotective function for secondary carotenoids of snow algae. J Phycol 29(4):427–434

    Article  Google Scholar 

  • Christian B, Lichti B, Pulz O, Grewe C, Luckas B (2009) Fast and unambiguous determination of EPA and DHA content in oil of selected strains of algae and cyanobacteria. Acta Agron Hung 57:249–253

    Article  Google Scholar 

  • Demmig-Adams B, Adams WW (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26

    Article  Google Scholar 

  • Duval B, Shetty K, Thomas WH (2000) Phenolic compounds and antioxidant properties in the snow alga Chlamydomonas nivalis after exposure to UV light. J Appl Phycol 11:559–566

    Article  Google Scholar 

  • Goldman JC, McCarthy JJ, Peavey DG (1979) Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279:210–215

    Article  Google Scholar 

  • Goss R, Jakob T (2010) Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynth Res 106:103–122

    Article  Google Scholar 

  • Ha S-Y, La HS, Min J-O, Chung K-H, Kang S-H, Shin K-H (2014a) Photoprotective function of mycosporine-like amino acids in a bipolar diatom (Porosira glacialis): evidence from ultraviolet radiation and stable isotope probing. Diatom Res 29(4):399–409. doi:10.1080/0269249X.2014.894945

    Article  Google Scholar 

  • Ha S-Y, Min J-O, Joo HM, Chung KH (2014b) Production rate estimation of mycosporine-like amino acids in two Arctic melt ponds by stable isotope probing with NaH13CO3. J Phycol 50:901–907

    Article  Google Scholar 

  • Häder D-P, Kumar HD, Smith RC, Worrest RC (1998) Effects on aquatic ecosystems. J Photoch Photobio B 46:53–68

    Article  Google Scholar 

  • Hama T, Handa N (1987) Pattern of organic matter production in natural phytoplankton population in a eutrophic lake 1. Intracellular products. Arch Hydrobiol 109:107–120

    Google Scholar 

  • Hamilton TL, Havig J (2017) Primary productivity of snow algae communities on stratovolcanoes of the Pacific Northwest. Geobiology 15:280–295

    Article  Google Scholar 

  • Hodson AJ, Nowak A, Cook J, Sabacka M, Wharfe ES, Pearce DA, Convey P, Vieira G (2017) Microbes influence the biogeochemical and optical properties of maritime Antarctic snow. J Geophys Res-Biogeos 122(6):1456–1470. doi:10.1002/2016JG003694

    Article  Google Scholar 

  • Holzinger A, Allen MC, Deheyn DD (2016) Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats. J Photoch Photobio B 162:412–420

    Article  Google Scholar 

  • Jeffrey SW, Mantoura RFC, Bjornland T (1997) Data for the identification of 47 key phytoplankton pigments. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography: guidelines to modern methods. Monographs on Oceanographic Methodology, UNESCO, Paris, pp 449–559

    Google Scholar 

  • Karentz D (2001) Chemical defenses of marine organisms against solar radiation exposure: UV-absorbing mycosporine-like amino acids and scytonemin. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC Press, Boca Raton, pp 481–519

    Chapter  Google Scholar 

  • Layman CA, Araujo MS, Boucek R, Hammerschlag-Peyer CM, Harrison E, Jud ZR. Matich P, Rosenblatt AE, Vaudo JJ, Yeager LA, Post DM, Bearhop S (2012) Applying stable isotopes to examine food-webs tructure: an overview of analytical tools. Biol Rev 87:545–562

    Article  Google Scholar 

  • Lemoine Y, Schoefs B (2010) Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth Res 106:155–177

    Article  Google Scholar 

  • Leya T, Rahn A, Lutz C, Remias D (2009) Response of arctic snow and permafrost algae to high light and nitrogen stress by changes in pigment composition and applied aspects for biotechnology. FEMS Microbiol Ecol 67:432–443

    Article  Google Scholar 

  • Ling HU, Seppelt RD (1990) Snow algae of the Windmill Islands, continental Antarctica. Mesotaenium berggrenii (Zygnematales, Chlorophyta) the alga of grey snow. Antarct Sci 2(2):143–148

    Article  Google Scholar 

  • Llewellyn CA, Harbour DS (2003) A temporal study of mycosporinelike amino acids in surface water phytoplankton from the English channel and correlation with solar irradiation. J Mar Biol Assoc UK 83:1–9

    Article  Google Scholar 

  • Lutz S, Anesio AM, Field K, Benning LG (2015) Integrated ‘Omics’, targeted metabolite and single-cell analyses of arctic snow algae functionality and adaptability. Front Microbiol 6:1323

    Google Scholar 

  • Lutz S, Anesio AM, Jorge Villar SE (2014) Variations of algal communities cause darkening of a Greenland glacier. FEMS Microbiol Ecol 89(2):402–414

    Article  Google Scholar 

  • Lutz S, Anesio AM, Raiswell R, Edwards A, Newton RJ, Gill F, Benning LG (2016) The biogeography of red snow microbiomes and their role in melting arctic glaciers. Nature Commun 7:11698. doi:10.1038/ncomms11968

    Article  Google Scholar 

  • Moline MA, Claustre H, Frazer TK, Schofield O, Vernet M (2004) Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Global Change Biol 10:1973–1980. doi:10.1111/j.1365-2486.2004.00825

    Article  Google Scholar 

  • Moon H-W, Rauhan WM, Hussin W, Kim H-C, Ahn I-Y (2015) The impacts of climate change on Antarctic nearshore megaepifaunal benthic assemblages in a glacial fjord on King George Island: responses and implications. Ecol Indi 57:280–292

    Article  Google Scholar 

  • Müller T, Bleib W, Martin C-D, Rogaschewski S, Fuhr G (1998) Snow algae from northwest Svalbard: their identification, distribution, pigment and nutrient content. Polar Biol 20(1):14–32

    Article  Google Scholar 

  • Neale PJ, Banaszak AT, Jarriel CR (1998) Ultraviolet sunscreens in Gymnodinium sanguineum (Dinophyceae): mycosporinelike amino acids protect against inhibition of photosynthesis. J Phycol 34:928–938

    Article  Google Scholar 

  • Park MO (2006) Composition and distribution of phytoplankton with size fraction results at Southwestern East/Japan Sea. Ocean Sci J 41:301–313

    Article  Google Scholar 

  • Pereira SL, Leonard AE, Huang YS, Chuang LT, Mukerji P (2004) Identification of two novel microalgal enzymes involved in the conversion of the ω3-fatty acid, eicosapentaenoic acid, into docosahexaenoic acid. Biochem J 384:357–366

    Article  Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320

    Article  Google Scholar 

  • Pritchard HD, Ligtenberg SRM, Frickers HA, Vaughan DG, van den Broeke MR, Padman L (2012) Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484:502–505. doi:10.1038/nature10968

    Article  Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–221

    Google Scholar 

  • Remias D, Lütz-Meindl U, Lütz C (2005) Photosynthesis, pigments and ultrastructure of the alpine snowalga Chlamydomonas nivalis. Eur J Phycol 40(3):259–268

    Article  Google Scholar 

  • Remias D, Pichrtová M, Pangratz M, Lütz C, Holzinger A (2016) Ecophysiology, secondary pigments and ultrastructure of Chlainomonas sp. (Chlorophyta) from the European Alps compared with Chlamydomonas nivalis forming red snow. FEMS Micorbiol Ecol 92(4):fiw030. doi:10.1093/femsec/fiw030

    Article  Google Scholar 

  • Remias D, Wastian H, Lütz C, Leya T (2013) Insight into the biology and phylogeny of Chloromonas polyptera (Chlorophyta), an alga causing orange snow in Maritime Antarctica. Antarct Sci 25(5):648–656

    Article  Google Scholar 

  • Řezanka T, Nedbalová L, Sigler K (2008) Unusual medium-chain polyunsaturated fatty acids from the snow alga Chloromonas brevispina. Microbiol Res 163:373–379

    Article  Google Scholar 

  • Rott H, Rack W, Skvarca P, de Angelis H (2002) Northern larsen ice shelf, Antarctica: further retreat after collapse. Ann Glaciol 34:277–282

    Article  Google Scholar 

  • Rückamp M, Braun M, Suckro S, Blindow N (2011) Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade. Global Planet Change 79:99–109

    Article  Google Scholar 

  • Sahade R, Lagger C, Torre L, Momo F, Monien P, Schloss I, Barnes DKA, Servetto N, Taratelli S, Tatián M, Zamboni N, Abele D (2015) Climate change and glacier retreat drive shifts invan Antarctic benthic ecosystem. Sci Adv 1(10):e1500050. doi:10.1126/sciadv. 1500050

    Article  Google Scholar 

  • Sahu A, Pancha I, Jain D, Paliwal C, Ghosh T, Patidar S, Bhattacharya S, Mishra S (2013) Fatty acids as biomarkers of microalgae. Phytochemistry 89:53–58

    Article  Google Scholar 

  • Sinha RP, Ambasht NK, Sinha JP, Klisch M, Häder DP (2003) UV-B-induced synthesis of mycosporine-like amino acids in three strains of Nodularia (cyanobacteria). J Photoch Photobio B 71:51–58

    Article  Google Scholar 

  • Spijkerman E, Wacker A, Weithoff G, Leya T (2012) Elemental and fatty acid composition of snow algae in Arctic habitats. Front Microbiol 3:380

    Article  Google Scholar 

  • Steinhart GS, Likens GE, Soto D (2002) Physiological indicators of nutrient deficiency in phytoplankton in southern Chilean lakes. Hydrobiologia 489:21–27

    Article  Google Scholar 

  • Takeuchi N (2013) Seasonal and altitudinal variations in snow algal communities on an Alaskan glacier (Gulkana glacier in the Alaska range). Environ Res Lett 8:035002. doi:10.1088/1748-9326/8/3/035002

    Article  Google Scholar 

  • Takeuchi N, Dial R, Kohshima S, Segawa T, Uetake J (2006) Spatial distribution and abundance of red snow algae on the Harding Icefield, Alaska derived from a satellite image. Geophys Res Lett 33:L21502. doi:10.1029/2006GL027819

    Article  Google Scholar 

  • Thomas WH, Duval B (1995) Sierra Nevada, California, U.S.A., snow algae: snow albedo changes, algal-bacterial interrelationships, and ultraviolet radiation effects. Arct Antarct Alp Res 27(4):389–399

    Article  Google Scholar 

  • Turner J, Barrand NE, Bracegirdle TJ, Convey P, Hodgson DA, Jarvis M, Jenkins A, Marshall GJ, Meredith MP, Roscoe HK, Shanklin JD, French J, Goosse H, Guglielmin M, Gutt J, Jacobs SS,Kennicutt MCI, Masson-Delmotte V, Mayewski P, Navarro F, Robinson S, Scambos T, Sparrow M, Speer K, Summerhayes CP, Klepikov AV (2014) Antarctic climate change and the environment: an update. Polar Rec 50(3):237–259

    Article  Google Scholar 

  • Volkmann M, Gorbushina AA (2006) A broadlyapplicable method for extraction and characterization of mycosporines and mycosporine-like amino acids ofterrestrial, marine and freshwater origin. FEMS Microbiol Lett 255:286–295

    Article  Google Scholar 

  • Wada E, Terazaki M, Kabaya Y, Nemoto T (1987) 15N and 13C abundances in the Antarctic Ocean with emphasis on the biogeochemical structure of the food web. Deep-Sea Res 34:829–841

    Article  Google Scholar 

  • Wada N, Sakamoto T, Matsugo S (2015) Mycosporine-like amino acids and their derivatives as natural antioxidants. Antioxidants 4(3):603–646

    Article  Google Scholar 

  • Whitehead K, Karentz D, Hedges JI (2001) Mycosporine-like amino acids (MAAs) in phytoplankton, a herbivorous pteropod (Limacina helicina), and its pteropod predator (Clione antarctica) in McMurdo Bay, Antarctica. Mar Biol 139:1013–1019

    Article  Google Scholar 

  • Whitelam GC, Codd GA (1986) Damaging effects of light on microorganisms. In: Herbert RA, Codd GA (eds) Microbes in extreme environments. Academic Press, London, pp 129–169

    Google Scholar 

  • Yacobi YZ, Ostrovsky I (2012) Sedimentation of phytoplankton: role of ambient conditions and life strategies of algae. Hydrobiologia 698:111–120

    Article  Google Scholar 

  • Zapata M, Rodríguez F, Garrido JL (2000) Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridinecontaining mobile phases. Mar Ecol-Prog Ser 195:29–45

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Yong Ha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, B.K., Joo, H., Lee, B. et al. Physiological Characteristics and Related Biochemical Parameters of Snow Algae from King George Island, Antarctica. Ocean Sci. J. 53, 621–630 (2018). https://doi.org/10.1007/s12601-018-0053-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12601-018-0053-8

Keywords

Navigation