Skip to main content

Advertisement

Log in

Cellulolytic activity in the hepatopancreas of Chionoecetes opilio and Chionoecetes japonicus: enzymatic adaptations to deep sea environment

  • Original Article
  • Chemistry and Biochemistry
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Chionoecetes opilio and Chionoecetes japonicus are closely related crab species that inhabit bathymetrically distinct habitats. C. opilio is caught mainly in waters shallower than 500 m, whereas C. japonicus largely resides at depths below 500 m. In this study, the activity of partially purified cellulase (β-1,4-glucanase) from the hepatopancreas of C. opilio (CoCel) and C. japonicus (CjCel) was investigated under high static pressure. SDS-PAGE-zymogram analysis revealed a major band in both species, with a calculated molecular mass of 41 kDa. In tests under various static pressures from 0.1 to 200 MPa, CoCel maintained 80 % of its activity up to 20 MPa, but activity decreased sharply to 20 % at 200 MPa in a pressure-dependent manner. In contrast, CjCel was less sensitive to high pressure, and maintained 65 % activity at 200 MPa. The activity of both CoCel and CjCel followed Michaelis–Menten kinetics at normal pressure levels; however, enzymatic activity of both CoCel and CjCel was suppressed in a non-competitive manner. These results suggest that CjCel, which can maintain normal activity under extremely high static pressure, have become highly adapted to the deep sea environment compared with CoCel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yosho I, Hayashi I (1994) The bathymetric distribution of Chionoecetes opilio and C. japonicus (Majidae: Brachyura) in the western and northern areas of the Sea of Japan. Bull Jpn Sea Natl Fish Res Inst 44:59–71

    Google Scholar 

  2. Gibbs AG (1997) Biochemistry at depth. In: Randall DJ, Farrell AP (eds) Deep-sea fishes. Academic Press, London, pp 239–277

    Chapter  Google Scholar 

  3. Somero GN (2003) Protein adaptation to temperature and pressure: complementary roles of adaptive changes in amino acid sequence and internal milieu. Comp Biochem Physiol B 136:577–591

    Article  PubMed  Google Scholar 

  4. Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Annu Rev Entomol 55:609–632

    Article  CAS  PubMed  Google Scholar 

  5. Watanabe H, Noda H, Tokuda G, Lo N (1998) A cellulase gene of termite origin. Nature 394:330–331

    Article  CAS  PubMed  Google Scholar 

  6. Smant G, Stokkermans JP, Yan Y, de Boer JM, Baum TJ, Wang X, Hussey RS, Gommers FJ, Henrissat B, Davis EL, Helder J, Schots A, Bakker J (1998) Endogenous cellulases in animals: isolation of β-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc Natl Acad Sci USA 95:4906–4911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sugimura M, Watanabe H, Lo N, Saito H (2003) Purification, characterization, cDNA cloning and nucleotide sequencing of a cellulase from the yellow-spotted longicorn beetle, Psacothea hilaris. Eur J Biochem 270:3455–3460

    Article  CAS  PubMed  Google Scholar 

  8. Byrne KA, Lehnert SA, Johnson SE, Moore SS (1999) Isolation of a cDNA encoding a putative cellulase in the red claw crayfish Cherax quadricarinatus. Gene 239:317–324

    Article  CAS  PubMed  Google Scholar 

  9. Nishida Y, Suzuki K, Kumagai Y, Tanaka H, Inoue A, Ojima T (2007) Isolation and primary structure of a cellulase from the Japanese sea urchin Strongylocentrotus nudus. Biochimie 89:1002–1011

    Article  CAS  PubMed  Google Scholar 

  10. Suzuki K, Ojima T, Nishita K (2003) Purification and cDNA cloning of a cellulase from abalone Haliotis discus hannai. Eur J Biochem 270:771–778

    Article  CAS  PubMed  Google Scholar 

  11. Sakamoto K, Touhata K, Yamashita M, Kasai A, Toyohara H (2007) Cellulose digestion by common Japanese freshwater clam Corbicula japonica. Fish Sci 73:675–683

    Article  CAS  Google Scholar 

  12. Niiyama T, Toyohara H (2011) Widespread distribution of cellulase and hemicellulase activities among aquatic invertebrates. Fish Sci 77:649–655

    Article  CAS  Google Scholar 

  13. Kobayashi H, Hatada Y, Tsubouchi T, Nagahama T, Takami H (2012) The hadal amphipod Hirondellea gigas possessing a unique cellulase for digesting wooden debris buried in the deepest seafloor. PLoS One 7:e42727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Adachi K, Toriyama K, Azekura T, Morioka K, Tongnunui K, Ikejima K (2012) Potent cellulase activity in the hepatopancreas of mangrove crabs. Fish Sci 78:1309–1314

    Article  CAS  Google Scholar 

  15. Jue C, Lipke P (1985) Determination of reducing sugars in the nanomole range with tetrazolium blue. J Biochem Biophys Methods 11:109–115

    Article  CAS  PubMed  Google Scholar 

  16. Ohmae E, Gekko K, Kato C (2015) Environmental adaptation of dihydrofolate reductase from deep-sea bacteria. In: Akasaka K, Matsuki H (eds) High pressure bioscience—basic concepts, applications and frontiers. Springer, Berlin, pp 423–442

    Google Scholar 

  17. Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  18. Wong PT, Heremans K (1988) Pressure effects on protein secondary structure and hydrogen deuterium exchange in chymotrypsinogen: a Fourier transform infrared spectroscopic study. Biochim Biophys Acta 956:1–9

    Article  CAS  PubMed  Google Scholar 

  19. Murakami C, Ohmae E, Tate S, Gekko K, Nakasone K, Kato C (2011) Comparative study on dihydrofolate reductases from Shewanella species living in deep-sea and ambient atmospheric-pressure environments. Extremophiles 15:165–175

    Article  CAS  PubMed  Google Scholar 

  20. Silva JL, Foguel D, Royer CA (2001) Pressure provides new insights into protein folding, dynamics and structure. Trends Biochem Sci 26:612–618

    Article  CAS  PubMed  Google Scholar 

  21. Eisenmenger MJ, Reyes-De-Corcuera JI (2009) High pressure enhancement of enzymes: a review. Enzym Microb Technol 45:331–347

    Article  CAS  Google Scholar 

  22. Ohmae E, Miyashita Y, Kato C (2013) Thermodynamic and functional characteristics of deep-sea enzymes revealed by pressure effects. Extremophiles 17:701–709

    Article  CAS  PubMed  Google Scholar 

  23. Kawaida S, Kimura T, Toyohara H (2013) Habitat segregation of two dotillid crabs Scopimera globosa and Ilyoplax pusilla in relation to their cellulase activity on a marsh-dominated estuarine tidal flat in central Japan. J Exp Mar Biol Ecol 449:93–99

    Article  Google Scholar 

  24. Linton SM, Shirley AJ (2011) Isozymes from the herbivorous gecarcinid land crab, Gecarcoidea natalis that possess both lichenase and endo-β-1,4-glucanase activity. Comp Biochem Physiol B 160:44–53

    Article  CAS  PubMed  Google Scholar 

  25. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  CAS  PubMed  Google Scholar 

  26. Yasuda T (1967) Feeding habit of the zuwaigani, Chionoecetes opilio elongatus, in Wakasa Bay-I: specific composition of the stomach contents. Nippon Suisan Gakkaishi 33:315–319

    Article  Google Scholar 

  27. Yosho I (2009) Studies on biology and stock management of Beni-zuwai crab, Chionoecetes japonicus Rathbun, in the Sea of Japan. PhD dissertation, Tohoku University, Sendai, Japan

Download references

Acknowledgments

The authors would like to thank Professor Fumiyoshi Abe (Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University) for his useful advice. The authors are grateful to Hideaki Yamada from the Tottori Fisheries Experimental Station for kindly providing the experimental samples for preliminary study. This work was supported in part by the Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (JSPS KAKENHI; Grant Number 26520308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohsuke Adachi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adachi, K., Tanimura, K., Mitsui, T. et al. Cellulolytic activity in the hepatopancreas of Chionoecetes opilio and Chionoecetes japonicus: enzymatic adaptations to deep sea environment. Fish Sci 82, 835–841 (2016). https://doi.org/10.1007/s12562-016-1014-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-016-1014-8

Keywords

Navigation