Skip to main content
Log in

Thermodynamic and functional characteristics of deep-sea enzymes revealed by pressure effects

  • Review
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Hydrostatic pressure analysis is an ideal approach for studying protein dynamics and hydration. The development of full ocean depth submersibles and high-pressure biological techniques allows us to investigate enzymes from deep-sea organisms at the molecular level. The aim of this review was to overview the thermodynamic and functional characteristics of deep-sea enzymes as revealed by pressure axis analysis after giving a brief introduction to the thermodynamic principles underlying the effects of pressure on the structural stability and function of enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. This equation should be represented as follows:

    $$ \Updelta G_{\text{u}}^{^\circ } = - RT\ln K $$
    (1a)

    However, we used \( \Updelta G_{\text{u}}^{^\circ } \) as the symbol for standard Gibbs free energy change under physiological conditions, i.e., at atmospheric pressure and physiological temperature in the absence of denaturants, which were determined by extrapolating those observed at the various conditions shown in the inset of Fig. 3. Therefore, to avoid using \( \Updelta G_{\text{u}}^{^\circ } \), we removed the degree symbol from this equation. Such a step is generally used in the field of protein thermodynamics; however, we ensured that the thermodynamic symbols used in this article corresponded to 1 mol of material, except for V t and ΔV t.

  2. To understand this clearly, imagine the liquid–vapor equilibrium of n-hexane. Although various conformers exist in both the liquid and vapor phases of n-hexane, there are only two states. The equilibrium between both states is mainly determined by the intermolecular interactions between each molecule. Proteins have much more conformational freedom than n-hexane, and many conformers exist in both the native and unfolded states; however, there are usually only two observed states. We use a dilute solution in which the protein–protein interactions can be neglected; therefore, intermolecular interactions mainly exist between the protein and water molecules.

Abbreviations

DHFR:

Dihydrofolate reductase

IPMDH:

3-Isopropylmalate dehydrogenase

NMR:

Nuclear magnetic resonance

TMAO:

Trimethylamine N-oxide

References

  • Abe F, Minegishi H, Miura T, Nagahama T, Usami R, Horikoshi K (2006) Characterization of cold- and high-pressure-active polygalacturonases from a deep-sea yeast, Cryptococcus liquefaciens strain N6. Biosci Biotechnol Biochem 70:296–299

    Article  PubMed  CAS  Google Scholar 

  • Anzenbacher P, Hudeček J (2001) Differences in flexibility of active sites of cytochromes P450 probed by resonance Raman and UV–vis absorption spectroscopy. J Inorg Biochem 87:209–213

    Article  PubMed  CAS  Google Scholar 

  • Atomi H, Sato T, Kanai T (2011) Application of hyperthermophiles and their enzymes. Curr Opin Biotechnol 22:618–626

    Article  PubMed  CAS  Google Scholar 

  • Banachowicz E (2006) Light scattering studies of proteins under compression. Biochim Biophys Acta 1764:405–413

    Article  PubMed  CAS  Google Scholar 

  • Bartlett DH (2002) Pressure effects on in vivo microbial processes. Biochim Biophys Acta 1595:367–381

    Article  PubMed  CAS  Google Scholar 

  • Bartlett D, Wright M, Yayanos AA, Silverman M (1989) Isolation of a gene regulated by hydrostatic pressure in a deep-sea bacterium. Nature 342:572–574

    Article  PubMed  CAS  Google Scholar 

  • Bowman JP, McCammon SA, Nichols DS, Skerratt JH, Rea SM, Nichols PD, McMeekin TA (1997) Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5 omega 3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Bacteriol 47:1040–1047

    Article  PubMed  CAS  Google Scholar 

  • Brindley AA, Pickersgill RW, Partridge JC, Dunstan DJ, Hunt DM, Warren MJ (2008) Enzyme sequence and its relationship to hyperbaric stability of artificial and natural fish lactate dehydrogenases. PLoS ONE 3:e2042

    Article  PubMed  Google Scholar 

  • Chikuma S, Kasahara R, Kato C, Tamegai H (2007) Bacterial adaptation to high pressure: a respiratory system in the deep-sea bacterium Shewanella violacea DSS12. FEMS Microbiol Lett 267:108–112

    Article  PubMed  CAS  Google Scholar 

  • Cioni P, Gabellieri E (2011) Protein dynamics and pressure: what can high pressure tell us about protein structural flexibility? Biochim Biophys Acta 1814:934–941

    Article  PubMed  CAS  Google Scholar 

  • Cioni P, Strambini GB (2002) Tryptophan phosphorescence and pressure effects on protein structure. Biochim Biophys Acta 1595:116–130

    Article  PubMed  CAS  Google Scholar 

  • Collins MD, Kim CU, Gruner SM (2011) High-pressure protein crystallography and NMR to explore protein conformations. Annu Rev Biophys 40:81–98

    Article  PubMed  CAS  Google Scholar 

  • De Vos D, Xu Y, Hulpiau P, Vergauwen B, Van Beeumen JJ (2007) Structural investigation of cold activity and regulation of aspartate carbamoyltransferase from the extreme psychrophilic bacterium Moritella profunda. J Mol Biol 365:379–395

    Article  PubMed  Google Scholar 

  • Dzwolak W, Kato M, Taniguchi Y (2002) Fourie transform infrared spectroscopy in high-pressure studies on proteins. Biochim Biophys Acta 1595:131–144

    Article  PubMed  CAS  Google Scholar 

  • Egorova K, Antranikian G (2005) Industrial relevance of thermophilic Archaea. Curr Opin Microbiol 8:649–655

    Article  PubMed  CAS  Google Scholar 

  • Ferrer M, Golyshina OV, Chernlkova TN, Khachane AN, Martins dos Santos VAP, Yakimov MM, Timmis KN, Golyshin PN (2005) Microbial enzymes mined from the Urania deep-sea hypersaline anoxic basin. Chem Biol 12:895–904

    Article  PubMed  CAS  Google Scholar 

  • Ferstl P, Gillig S, Kaufmann C, Dürr C, Eder C, Wierschem A, Ruß W (2010) Pressure-induced phase transitions in triacylglycerides. Ann N Y Acad Sci 1189:62–67

    Article  PubMed  CAS  Google Scholar 

  • Grosh W, Dam B (2009) Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiol Rev 33:999–1043

    Article  Google Scholar 

  • Groβ M, Auerbach G, Jaenicke R (1993) The catalytic activities of monomeric enzymes show complex pressure dependence. FEBS Lett 321:256–260

    Article  Google Scholar 

  • Hammes GG, Benkovic SJ, Hammes-Schiffer S (2011) Flexibility, diversity, and cooperativity: pillars of enzyme catalysis. Biochemistry 50:10422–10430

    Article  PubMed  CAS  Google Scholar 

  • He HL, Chen XL, Zhang XY, Sun CY, Zou BC, Zhang YZ (2009) Novel use for the osmolyte trimethylamine N-oxide: retaining the psychrophilic characters of cold-adapted protease deseasin MCP-01 and simultaneously improving its thermostability. Mar Biotechnol 11:710–716

    Article  PubMed  CAS  Google Scholar 

  • Hei DJ, Clark DS (1994) Pressure stabilization of proteins from extreme thermophiles. Appl Environ Microbiol 60:932–939

    PubMed  CAS  Google Scholar 

  • Ishimaru D, Andrade LR, Teixeira LSP, Quesado PA, Maiolino LM, Lopez PM, Cordeiro Y, Costa LT, Heckl WM, Weissmüller G, Foguel D, Silva JL (2003) Fibrillar aggregates of the tumor suppressor p53 core domain. Biochemistry 42:9022–9027

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru D, Ano Bom APD, Lima LMTR, Quesado PA, Oyama MFC, de Moura Gallo CV, Cordeiro Y, Silva JL (2009) Cognate DNA stabilizes the tumor suppressor p53 and prevents misfolding and aggregation. Biochemistry 48:6126–6135

    Article  PubMed  CAS  Google Scholar 

  • Jonas J (2002) High-resolution nuclear magnetic resonance studies of proteins. Biochim Biophys Acta 1595:145–159

    Article  PubMed  CAS  Google Scholar 

  • Kangur L, Timpmann K, Freiberg A (2008) Stability of integral membrane proteins under high hydrostatic pressure: the LH2 and LH3 antenna pigment-protein complexes from photosynthetic bacteria. J Phys Chem B 112:7948–7955

    Article  PubMed  CAS  Google Scholar 

  • Kasahara R, Sato T, Tamegai H, Kato C (2009) Piezo-adapted 3-isopropylmalate dehydrogenase of the obligate piezophile Shewanella benthica DB21MT-2 isolated from the 11,000-m depth of the Mariana Trench. Biosci Biotechnol Biochem 73:2541–2543

    Article  PubMed  CAS  Google Scholar 

  • Kato C, Sato T, Horikoshi K (1995) Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodivers Conserv 4:1–9

    Article  Google Scholar 

  • Kato C, Li L, Nogi Y, Nakamura Y, Tamaoka J, Horikoshi K (1998) Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl Environ Microbiol 64:1510–1513

    PubMed  CAS  Google Scholar 

  • Kato C, Sato T, Abe F, Ohmae E, Tamegai H, Nakasone K (2007) Discoveries of deep-sea piezophiles, and their pressure adapted enzymes. In: Proceedings of the 4th international conference on high pressure bioscience and biotechnology, vol 1, pp 114–121

  • Kato C, Sato T, Abe F, Ohmae E, Tamegai H, Nakasone K, Siddiqui KS, Thomas T (2008) Protein adaptation to high-pressure environments. In: Siddiqui KS, Thomas T (eds) Protein adaptation in extremophiles. Nova Science Publisher, New York, pp 167–191

    Google Scholar 

  • Kauzman W (1959) Some factors in the interpretation of protein denaturation. Adv Protein Chem 14:1–63

    Article  Google Scholar 

  • Kneller GR, Calandrini V (2010) Self-similar dynamics of proteins under hydrostatic pressure—computer simulations and experiments. Biochim Biophys Acta 1804:56–62

    Article  PubMed  CAS  Google Scholar 

  • Konisky J, Michels PC, Clark DS (1995) Pressure stabilization is not a general property of thermophilic enzymes: the adenylate kinases of Methanococcus voltae, Methanococcus maripaludis, Methanococcus thermolithotrophicus, and Methanococcus jannaschii. Appl Environ Microbiol 61:2762–2764

    PubMed  CAS  Google Scholar 

  • Lange R, Balny C (2002) UV–visible derivative spectroscopy under high pressure. Biochim Biophys Acta 1595:80–93

    Article  PubMed  CAS  Google Scholar 

  • Michels PC, Clark DS (1997) Pressure-enhanced activity and stability of a hyperthermophilic protease from a deep-sea methanogen. Appl Environ Microbiol 63:3985–3991

    PubMed  CAS  Google Scholar 

  • Minic Z, Thongbam PD (2011) The biological deep sea hydrothermal vent as a model to study carbon dioxide capturing enzymes. Mar Drugs 9:719–738

    Article  PubMed  CAS  Google Scholar 

  • Murakami C, Ohmae E, Tate S, Gekko K, Nakasone K, Kato C (2010) Cloning and characterization of dihydrofolate reductases from deep-sea bacteria. J Biochem 147:591–599

    Article  PubMed  CAS  Google Scholar 

  • Murakami C, Ohmae E, Tate S, Gekko K, Nakasone K, Kato C (2011) Comparative study on dihydrofolate reductases from Shewanella species living in deep-sea and ambient atmospheric-pressure environments. Extremophiles 15:165–175

    Article  PubMed  CAS  Google Scholar 

  • Nagae T, Kato C, Watanabe N (2012) Structural analysis of 3-isopropylmalate dehydrogenase from the obligate piezophile Shewanella benthica DB21MT-2 and the nonpiezophile Shewanella oneidensis MR-1. Acta Cryst F68:265–268

    Google Scholar 

  • Nogi Y, Kato C, Horikoshi K (1998a) Taxonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. nov. Arch Microbiol 170:331–338

    Article  PubMed  CAS  Google Scholar 

  • Nogi Y, Kato C, Horikoshi K (1998b) Moritella japonica sp. nov., a novel barophilic bacterium isolated from a Japan Trench sediment. J Gen Appl Microbiol 44:289–295

    Article  PubMed  CAS  Google Scholar 

  • Oger PM, Daniel I, Picard A (2010) In situ Raman and X-ray spectroscopies to monitor microbial activities under high hydrostatic pressure. Ann N Y Acad Sci 1189:113–120

    Article  PubMed  Google Scholar 

  • Ohmae E (2013) Role of hydration on structural stability and function of proteins: information from studies on a deep-sea enzyme. Rev High Pressure Sci Technol 23:13–20

    Article  CAS  Google Scholar 

  • Ohmae E, Murakami C, Gekko K, Kato C (2007) Pressure effects on enzyme functions. J Biol Macromol 7:23–29

    Article  CAS  Google Scholar 

  • Ohmae E, Murakami C, Tate S, Gekko K, and Kato C (2008a) Effects of pressure on proteins. In: Proceedings of the 15th symposium for Japanese Research Group of high pressure bioscience and biotechnology, vol 2, pp 38–44

  • Ohmae E, Tatsuta M, Abe F, Kato C, Tanaka N, Kunugi S, Gekko K (2008b) Effects of pressure on enzyme function of Escherichia coli dihydrofolate reductase. Biochim Biophys Acta 1784:1115–1121

    Article  PubMed  CAS  Google Scholar 

  • Ohmae E, Murakami C, Tate S, Gekko K, Hata K, Akasaka K, Kato C (2012) Pressure dependence of activity and stability of dihydrofolate reductases of the deep-sea bacterium Moritella profunda and Escherichia coli. Biochim Biophys Acta 1824:511–519

    Article  PubMed  CAS  Google Scholar 

  • Owen RJ, Legros RM, Lapage SP (1978) Base composition, size and sequence similarities of genome deoxyribonucleic acids from clinical isolates of Pseudomonas putrefaciens. J Gen Microbiol 104:127–138

    Article  PubMed  CAS  Google Scholar 

  • Paci E (2002) High pressure simulations of biomolecules. Biochim Biophys Acta 1595:185–200

    Article  PubMed  CAS  Google Scholar 

  • Purcarea C, Simon V, Prieur D, Hervé G (1996) Purification and characterization of carbamoyl-phosphate synthetase from deep-sea hyperthermophilic archaebacterium Pyrococcus abyssi. Eur J Biochem 236:189–199

    Article  PubMed  CAS  Google Scholar 

  • Purcarea C, Hervé G, Ladjimi MM, Cunin R (1997) Aspartate transcarbamylase from the deep-sea hyperthermophilic archaeon Pyrococcus abyssi: genetic organization, structure, and expression in Escherichia coli. J Bacteriol 179:4143–4157

    PubMed  CAS  Google Scholar 

  • Ruan K, Balny C (2002) High pressure static fluorescence to study macromolecular structure-function. Biochim Biophys Acta 1595:94–102

    Article  PubMed  CAS  Google Scholar 

  • Saito R, Kato C, Nakayama A (2006) Amino acid substitutions in malate dehydrogenases of piezophilic bacteria isolated from intestinal contents of deep-sea fishes retrieved from the abyssal zone. J Gen Appl Microbiol 52:9–19

    Article  PubMed  CAS  Google Scholar 

  • Sawaya MR, Kraut J (1997) Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence. Biochemistry 36:586–603

    Article  PubMed  CAS  Google Scholar 

  • Schroer MA, Paulus M, Jeworrek C, Krywka C, Schmacke S, Zhai Y, Wieland DCF, Sahle CJ, Chimenti M, Royer CA, Garcia-Moreno B, Tolan M, Winter R (2010) High-pressure SAXS study of folded and unfolded ensembles of proteins. Biophys J 99:3430–3437

    Article  PubMed  CAS  Google Scholar 

  • Sharma M, Chauhan PMS (2012) Dihydrofolate reductase as a therapeutic target for infectious diseases: opportunities and challenges. Future Med Chem 4:1335–1365

    Article  PubMed  CAS  Google Scholar 

  • Shin DS, DiDonato M, Barondeau DP, Hura GL, Hitomi C, Berglund JA, Getzoff ED, Cary SC, Tainer JA (2009) Superoxide dismutase from the eukaryotic thermophile Alvinella pompejana: structures, stability, mechanism, and insights into amyotrophic lateral sclerosis. J Mol Biol 385:1534–1555

    Article  PubMed  CAS  Google Scholar 

  • Shirai T, Hung VS, Morinaka K, Kobayashi T, Ito S (2008) Crystal structure of GH13 α-glucosidase GSJ from one of the deepest sea bacteria. Proteins 73:126–133

    Article  PubMed  CAS  Google Scholar 

  • Silva JL, Vieira TCRG, Gomes MPB, Ano Bom AP, Lima LMTR, Freitas MS, Ishimaru D, Cordeiro Y, Foguel D (2010) Ligand binding and hydration in protein misfolding: insights from studies of prion and p53 tumor suppressor proteins. Acc Chem Res 43:271–279

    Article  PubMed  CAS  Google Scholar 

  • Summit M, Scott B, Nielson K, Mathur E, Baross J (1998) Pressure enhances thermal stability of DNA polymerase from three thermophilic organisms. Extremophiles 2:339–345

    Article  PubMed  CAS  Google Scholar 

  • Sun MMC, Tolliday N, Vetriani C, Robb FT, Clark DS (1999) Pressure-induced thermostabilization of glutamate dehydrogenase from the hyperthermophile Pyrococcus furiosus. Protein Sci 8:1056–1063

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Sazaki G, Miyashita S, Sawada T, Tamura K, Komatsu H (2002) Protein crystallization under high pressure. Biochim Biophys Acta 1595:345–356

    Article  PubMed  CAS  Google Scholar 

  • Takekiyo T, Imai T, Kato M, Taniguchi Y (2006) Understanding high pressure stability of helical conformation of oligopeptides and helix bundle protein: high pressure FT-IR and RISM theoretical studies. Biochim Biophys Acta 1764:355–363

    Article  PubMed  CAS  Google Scholar 

  • Tauc P, Mateo CR, Brochon JC (2002) Investigation of the effect of high hydrostatic pressure on proteins and lipidic membranes by dynamic fluorescence spectroscopy. Biochim Biophys Acta 1595:103–115

    Article  PubMed  CAS  Google Scholar 

  • Teh AH, Kanamasa S, Kajiwara S, Kumasaka T (2008) Structure of Cu/Zn superoxide dismutase from the heavy-metal-tolerant yeast Cryptococcus liquefaciens strain N6. Biochem Biophys Res Com 374:475–478

    Article  PubMed  CAS  Google Scholar 

  • Unsworth LD, van der Oost J, Koutsopoulos S (2007) Hyperthermophilic enzymes—stability, activity and implementation strategies for high temperature applications. FEBS J 274:4044–4056

    Article  PubMed  CAS  Google Scholar 

  • Urayama P, Frey EW, Savage SR (2010) Fluorescent probe dyes for metabolic-ion sensing under high hydrostatic pressures. Ann N Y Acad Sci 1189:104–112

    Article  PubMed  CAS  Google Scholar 

  • Venkateswaran K, Moser DP, Dollhopf ME, Lies DP, Saffarini DA, MacGregor BJ, Ringelberg DB, White DC, Nishijima M, Sano H, Burghardt J, Stackebrandt E, Nealson KH (1999) Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp nov. Int J Syst Bacteriol 49:705–724

    Article  PubMed  CAS  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    Article  PubMed  CAS  Google Scholar 

  • Winter R (2002) Synchrotron X-ray and neutron small-angle scattering of lyotropic lipid mesophases, model biomembranes and proteins in solution at high pressure. Biochim Biophys Acta 1595:160–184

    Article  PubMed  CAS  Google Scholar 

  • Xie BB, Bian F, Chen XL, He HL, Guo J, Gao X, Zeng YX, Chen B, Zhou BC, Zhang YZ (2009) Cold adaptation of zinc metalloproteases in the thermolysin family from deep sea and Arctic sea ice bacteria revealed by catalytic and structural properties and molecular dynamics. J Biol Chem 284:9257–9269

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Nogi Y, Kato C, Liang Z, Rüger HJ, De Kegel D, Glansdorff N (2003) Moritella profunda sp. nov. and Moritella abyssi sp. nov., two psychropiezophilic organisms isolated from deep Atlantic sediments. Int J Syst Evol Microbiol 53:533–538

    Article  PubMed  CAS  Google Scholar 

  • Yancey PH, Siebenaller JF (1999) Trimethylamine oxide stabilizes teleost and mammalian lactate dehydrogenases against inactivation by hydrostatic pressure and trypsinolysis. J Exp Biol 202:3597–3603

    PubMed  CAS  Google Scholar 

  • Yang J, Dang H (2011) Cloning and characterization of a novel cold-active endoglucanase establishing a new subfamily of glycosyl hydrolase family 5 from a psychrophilic deep-sea bacterium. FEMS Microbiol Lett 325:71–76

    Article  PubMed  CAS  Google Scholar 

  • Zeng R, Zhang R, Zhao J, Lin N (2003) Cold-active serine alkaline protease from the psychrophilic bacterium Pseudomonas strain DY-A: enzyme purification and characterization. Extremophiles 7:335–337

    Article  PubMed  CAS  Google Scholar 

  • Zeng R, Xiong P, Wen J (2006) Characterization and gene cloning of a cold-active cellulase from a deep-sea psychrotrophic bacterium Pseudoalteromonas sp. DY3. Extremophiles 10:79–82

    Article  PubMed  CAS  Google Scholar 

  • Zhuravlev PI, Materese CK, Papoian GA (2009) Deconstructing the native state: energy landscapes, function, and dynamics of globular proteins. J. Phys. Chem. B 113:8800–8812

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan (No. 24570186 to E.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Ohmae.

Additional information

Communicated by S. Albers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohmae, E., Miyashita, Y. & Kato, C. Thermodynamic and functional characteristics of deep-sea enzymes revealed by pressure effects. Extremophiles 17, 701–709 (2013). https://doi.org/10.1007/s00792-013-0556-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-013-0556-2

Keywords

Navigation