Skip to main content
Log in

Heterologous expression of two Physcomitrella patens group 3 late embryogenesis abundant protein (LEA3) genes confers salinity tolerance in arabidopsis

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Salinity stress is a major limiting factor in agriculture and adversely affecting the whole plant. As a halophyte, the moss Physcomitrella patens, has been suggested to be an ideal model plant to study salinity tolerance and adaption. Two abiotic stress-responsive Group 3 Late Embryogenesis Abundant protein genes had been identified in P. patens and named as PpLEA3-1 and PpLEA3-2, respectively. Functions of these two genes were analyzed by heterologous expressions in Arabidopsis, driven either by their native P. patens promoters or by the 35S CaMV constitutive promoter. Phenotype analysis revealed that pLEA3::LEA3, pLEA3::LEA3::GFP and 35S::LEA3::GFP transgenic lines had stronger salinity resistance than that in the wild type and empty-vector control. Further analysis showed that the contents of proline and soluble sugar were increased and the malondialdehyde (MDA) were repressed in these transgenic plants after exposure to salinity stress. Our observations indicate that these two Group 3 PpLEA genes played a role in the adaption to salinity stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai YQ, Yang QC, Kang JM, Sun Y, Gruber M, Chao YH (2012) Isolation and functional characterization of a Medicago sativa L. gene, MsLEA3-1. Mol Biol Rep 39:2883–2892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bhardwaj R, Sharma I, Kanwar M, Sharma R, Handa N, Kaur H, Poonam DK (2013) Salt Stress in Plants. In: Ahmad P et al. (ed) LEA Proteins in Salt Stress Tolerance. Springer, New York pp. 79–112

    Book  Google Scholar 

  • Bose J, Rodrigo-Moreno A, Shabala S. (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Li X. (2015) Identification and phylogenetic analysis of late embryogenesis abundant proteins family in tomato (Solanum lycopersicum). Planta 241:757–772

    Article  CAS  PubMed  Google Scholar 

  • Chakrabortee S, Boschetti C, Walton LJ, Sarkar S, Rubinsztein DC, Tunnacliffe A. (2007) Hydrophilic protein associated with desiccation tolerance exhibits broad protein stabilization function. Proc Natl Acad Sci USA 104:18073–18078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuming AC, Cho SH, Kamisugi Y, Graham H, Quatrano RS (2007) Microarray analysis of transcriptional responses to abscisic acid and osmotic, salt, and drought stress in the moss, Physcomitrella patens. New Phytol 176:275–287

    Article  CAS  PubMed  Google Scholar 

  • Cui S, Hu J, Guo S, Wang J, Cheng Y, Dang X, Wu L, He Y (2012) Proteome analysis of Physcomitrella patens exposed to progressive dehydration and rehydration. J Exp Bot 63:711–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du J, Li M, Kong D, Wang L, Lv Q, Wang J, Lv Q, Wang J, Bao F, Gong Q, Xia J, He Y (2014) Nitric oxide induces cotyledon senescence involving co-operation of the NES1/MAD1 and EIN2-associated ORE1 signalling pathways in Arabidopsis. J Exp Bot 4051–4063

    Google Scholar 

  • Duan J, Cai W (2012) OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance. PLoS One 7:e45117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dure L. (1993) A repeating 11-mer amino acid motif and plant desiccation. Plant J 3:363–369

    Article  CAS  PubMed  Google Scholar 

  • Dure L. (2001) Occurrence of a Repeating 11-Mer Amino Acid Sequence Motif in Diverse Organisms. Protein Pept Lett 8:115–122

    Article  CAS  Google Scholar 

  • FAO (2009) High Level Expert Forum–How to Feed theWorld in 2050, Economic and Social Development. Food and Agricultural Organization of the United Nations, Rome, Italy

    Google Scholar 

  • Frank W, Ratnadewi D, Reski R. (2005) Physcomitrella patens is highly tolerant against drought, salt and osmotic stress. Planta 220:384–394

    Article  CAS  PubMed  Google Scholar 

  • Furuki T, Shimizu T, Chakrabortee S, Yamakawa K, Hatanaka R, Takahashi T, Kikawada T, Okuda T, Mihara H, Tunnacliffe A, Sakurai M (2012) Effects of Group 3 LEA protein model peptides on desiccation-induced protein aggregation. Biochim Biophys Acta 1824:891–897

    Article  CAS  PubMed  Google Scholar 

  • Gascuel O (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14:685–695

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Song A, Zhu X, Chen F, Jiang J, Chen Y, Sun Y, Shan H, Gu C, Li P, Chen S (2012) The heterologous expression in Arabidopsis of a chrysanthemum Cys2/His2 zinc finger protein gene confers salinity and drought tolerance. Planta 235:979–993

    Article  CAS  PubMed  Google Scholar 

  • Goyal K, Browne JA, Burnell AM (2005) Tunnacliffe A. Dehydrationinduced tps gene transcripts from an anhydrobiotic nematode contain novel spliced leaders and encode atypical GT-20 family proteins. Biochimie 87:565–574

    Article  CAS  PubMed  Google Scholar 

  • Grelet J, Benamar A, Teyssier E, Avelange-Macherel MH, Grunwald D (2005) Macherel D Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying. Plant Physiol 137:157–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta B, Huang B. (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics701596. doi: 10.1155/2014/701596

    Google Scholar 

  • Hajdukiewicz P, Svab Z, Maliga P. (1994) The small, versatile Ppzp family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  CAS  PubMed  Google Scholar 

  • Hand SC, Menze MA, Toner M, Boswell L, Moore D. (2011) LEA proteins during water stress: not just for plants anymore. Annu Rev Physiol 73:115–134

    Article  CAS  PubMed  Google Scholar 

  • Hara M, Fujinaga M, Kuboi T. (2005) Metal binding by citrus dehydrin with histidine-rich domains. J Exp Bot 56:2695–2703

    Article  CAS  PubMed  Google Scholar 

  • Hare PD, Cress WA. (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  • Hellwege EM, Dietz KJ, Hartung W. (1996) Abscisic acid causes changes in gene expression involved in the induction of the landform of the liverwort Riccia fluitans L. Planta 198:423–432

    Article  CAS  PubMed  Google Scholar 

  • Hincha DK, Thalhammer A. (2012) LEA proteins: IDPs with versatile functions in cellular dehydration tolerance. Biochem Soc Trans 40:1000–1003

    Article  CAS  PubMed  Google Scholar 

  • Honjoh K, Matsumoto H, Shimizu H, Ooyama K, Tanaka K, Oda Y, Takata R, Joh T, Suga K, Miyamoto T, Iio M, Hatano S (2000) Cryoprotective activities of group 3 late embryogenesis abundant proteins from Chlorella vulgaris C-27. Biosci Biotechnol Biochem 64:1656–1663

    Article  CAS  PubMed  Google Scholar 

  • Hsing YC, Chen ZY, Shih MD, Hsieh JS, Chow TY. (1995) Unusual sequences of group 3 LEA mRNA inducible by maturation or drying in soybean seeds. Plant Mol Biol 29:863–868

    Article  CAS  PubMed  Google Scholar 

  • Hundertmark M, Popova AV, Rausch S, Seckler R, Hincha DK. (2012) Influence of drying on the secondary structure of intrinsically disordered and globular proteins. Biochem Biophys Res Commun 417:122–128

    Article  CAS  PubMed  Google Scholar 

  • Joh T, Honjoh K, Yoshimoto M, Funabashi J, Miyamoto T, Hatano S. (1995) Molecular cloning and expression of hardening-induced genes in Chlorella vulgaris C-27: the most abundant clone encodes a late embryogenesis abundant protein. Plant Cell Physiol 36:85–93

    CAS  PubMed  Google Scholar 

  • Koag MC, Fenton RD, Wilkens S, Close TJ (2003) The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol 131:309–316

    CAS  PubMed  Google Scholar 

  • Kruger C, Berkowitz O, Stephan UW, Hell R. (2002) A metalbinding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. J Biol Chem 277:25062–25069

    Article  CAS  PubMed  Google Scholar 

  • Li KX, Wang YN, Han CY, Zhang WS, Jia HZ, Li JX (2007) GA signaling and CO/FT regulatory module mediate salt-induced late flowering in Arabidopsis thaliana. Plant Growth Regulation 53:195–206

    Article  CAS  Google Scholar 

  • Liu G, Xu H, Zhang L, Zheng Y. (2011) Fe binding properties of two soybean (Glycine max L.) LEA4 proteins associated with antioxidant activity. Plant Cell Physiol 52:994–1002

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang L, Xing X, Sun L, Pan J, Kong X, Zhang M, Li D (2013) ZmLEA3, a multifunctional group 3 LEA protein from maize (Zea mays L.), is involved in biotic and abiotic stresses. Plant Cell Physiol 54:944–959

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Gong Q, Bohnert HJ. (2006) Dissecting salt stress pathways. J Exp Bot 57:1097–1107

    Article  CAS  PubMed  Google Scholar 

  • Machado Neto NB, Saturnino SM, Bomfim DC, Custódio CC. (2004) Water stress induced by mannitol and sodium chloride in soybean cultivars. Braz Arch Biol Technol 47:521–529

    Google Scholar 

  • Marschner H, Kuiper PJC, Kylin A (1981) Genotypic differences in the response of sugar beet plants to replacement of potassium by sodium. Physiol Plant 51:239–244

    Article  CAS  Google Scholar 

  • Moons A, De Keyser A, Van Montagu M (1997) A group 3 LEA cDNA of rice, responsive to abscisic acid, but not to jasmonic acid, shows variety-specific differences in salt stress response. Gene 191:197–204

    Article  CAS  PubMed  Google Scholar 

  • Moons A, Bauw G, Prinsen E, Van Montagu M, Van der Straeten D (1995) Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant Indica rice varieties. Plant Physiol 107:177–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R (2000) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • NDong C, Danyluk J, Wilson KE, Pocock T, Huner NP, Sarhan F. (2002) Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. Molecular characterization and functional analyses. Plant Physiol 129:1368–1381

    CAS  PubMed  Google Scholar 

  • Nishiyama T, Hiwatashi Y, Sakakibara I, Kato M, Hasebe M (2000) Tagged mutagenesis and gene-trap in the moss, Physcomitrella patens by shuttle mutagenesis. DNA Research 7:9–17

    Article  CAS  PubMed  Google Scholar 

  • Park BJ, Liu ZC, Kanno A, Kameya T. (2005) Genetic improvement of Chinese cabbage for salt and drought tolerance by constitutive expression of a B. napus LEA gene. Plant Sci 169:553–558

    Article  CAS  Google Scholar 

  • Pyke KA and Leech RM (1991) Rapid Image Analysis Screening Procedure for Identifying Chloroplast Number Mutants in Mesophyll Cells of Arabidopsis thaliana (L.) Heynh. Plant Physiol 96:1193–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts JK, DeSimone NA, Lingle WL, Dure L (1993) Cellular Concentrations and Uniformity of Cell-Type Accumulation of Two Lea Proteins in Cotton Embryos. Plant Cell 5:769–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosa M, Prado C, Podazza G, Interdonato R, González JA, Hilal M, Prado FE (2009) Soluble sugars—Metabolism, sensing and abiotic stress. Plant Signal Behav 4:388–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salmi ML, Bushart TJ, Stout SC, Roux SJ (2005) Profile and analysis of gene expression changes during early development in germinating spores of Ceratopteris richardii. Plant Physiol 138:1734–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinde S, Shinde R, Downey F, Ng CK (2013) Abiotic stress-induced oscillations in steady-state transcript levels of Group 3 LEA protein genes in the moss, Physcomitrella patens. Plant Signal Behav 8:e22535. doi: 10.4161/psb.22535

    Article  PubMed  PubMed Central  Google Scholar 

  • Svensson J, Palva ET, Welin B (2000) Purification of recombinant Arabidopsis thaliana dehydrins by metal ion affinity chromatography. Protein Expr Purif 20:169–178

    Article  CAS  PubMed  Google Scholar 

  • Tolleter D, Jaquinod M, Mangavel C, Passirani C, Saulnier P, Manon S, Teyssier E, Payet N, Avelange-Macherel MH, Macherel D (2007) Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by desiccation. Plant Cell 19:1580–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolleter D, Hincha DK, Macherel D (2010) A mitochondrial late embryogenesis abundant protein stabilizes model membranes in the dry state. Biochim Biophys Acta 1798:1926–1933

    Article  CAS  PubMed  Google Scholar 

  • Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94:791–812

    Article  CAS  PubMed  Google Scholar 

  • Tunnacliffe A, Hincha DK, Leprince O, Machere M (2010) LEA proteins: versatility of form and function. In: Lubzens E et al (eds) Dormancy and resistance in harsh environments. Springer, Berlin, pp 91–108

    Book  Google Scholar 

  • Ukaji N, Kuwabara C, Takezawa D, Arakawa K, Fujikawa S (2001) Cold acclimation-induced WAP27 localized in endoplasmic reticulum in cortical parenchyma cells of mulberry tree was homologous to group 3 late-embryogenesis abundant proteins. Plant Physiol 126:1588–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Li X, Chen S, Liu G (2009) Enhanced drought tolerance in transgenic Leymus chinensis plants with constitutively expressed wheat. Biotechnol Lett 31:313–319

    Article  CAS  PubMed  Google Scholar 

  • Wang WG, Li R, Liu B, Li L, Wang SH, Chen F (2012) Alternatively spliced transcripts of group 3 late embryogenesis abundant protein from Pogonatherum paniceum confer different abiotic stress tolerance in Escherichia coli. J Plant Physiol 169:1559–1564

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yang P, Gao Q, Liu X, Kuang T, Shen S, He Y (2008) Proteomic analysis of the response to high-salinity stress in Physcomitrella patens. Planta 228:167–177

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Liu Y, Yang P (2012) Proteomic studies of the abiotic stresses response in model moss–Physcomitrella patens. Front Plant Sci 3:258. doi: 10.3389/fpls.2012.00258

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Qi M, Li J, Ji Z, Hu Y, Bao F, Mahalingam R, He Y (2014) The phosphoproteome in regenerating protoplasts from Physcomitrella patens protonemata shows changes paralleling postembryonic development in higher plants. J Exp Bot 65:2093–2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weigel D, Glazebrook J (2002) Arabidopsis: a Laboratory Manual. Chapter 1: How to grow Arabidopsis. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press

    Google Scholar 

  • Wen Y, Wang X, Xiao S, Wang Y (2012) Ectopic expression of VpALDH2B4, a novel aldehyde dehydrogenase gene from Chinese wild grapevine (Vitis pseudoreticulata), enhances resistance to mildew pathogens and salt stress in Arabidopsis. Planta. 236:525–539

    Article  CAS  PubMed  Google Scholar 

  • Wise MJ (2003) LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinformatics 4:52

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolken JJ, Schwertz FA (1953) Chlorophyll monolayers in Chloroplasts. J Gen Physiol 37:111–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolkers WF, McCready S, Brandt WF, Lindsey GG, Hoekstra FA (2001) Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochim Biophys Acta 1544:196–206

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Tian YS, Peng RH, Xiong AS, Zhu B, Jin XF, Gao F, Fu XY, Hou XL, Yao QH (2010) AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta 231:1251–1260

    Article  CAS  PubMed  Google Scholar 

  • Xue R, Liu Y, Zheng Y, Wu Y, Li X, Pei F, Ni J (2012) Threedimensional structure and mimetic-membrane association of consensus 11-amino-acid motif from soybean lea3 protein. Biopolymers 98:59–66

    Article  CAS  PubMed  Google Scholar 

  • Zhao PS, Liu F, Zheng GC, Liu H. (2011) Group 3 late embryogenesis abundant protein in Arabidopsis: structure, regulation, and function. Acta Physiol Plant 33:1063–1073

    Article  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Du or Yikun He.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Wang, L., Zhang, X. et al. Heterologous expression of two Physcomitrella patens group 3 late embryogenesis abundant protein (LEA3) genes confers salinity tolerance in arabidopsis. J. Plant Biol. 59, 182–193 (2016). https://doi.org/10.1007/s12374-016-0565-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-016-0565-7

Keywords

Navigation