Skip to main content
Log in

Compost Addition Effects upon Sweet Sorghum Biomass Productivity and Sugar Content

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Nitrogen availability generally limits plant growth. In order to reduce consumption of chemical fertilizers in agriculture organic amendments are usually incorporated. Among them compost usage is common. The experimental results presented and discussed below were done in order to find out the effects of compost additions on sweet sorghum biomass productivity and stalk sugar content, employing a partial substitution strategy of inorganic nitrogen by organic nitrogen from compost up to total substitution and at three levels of total nitrogen. We found an increasing positive trend between stalk biomass productivity and compost additions for all nitrogen levels tested. Maximum stalk productivity of 56 and 57 Mg/ha on wet basis were obtained with 100 % compost at 100 and 150 kgN/ha levels respectively. A minimum value of 32 Mg/ha on wet basis was obtained by the first cut sample at 50 kgN/ha employing only inorganic fertilization. The ratoon data was higher than those of the first cut for all cases. A significant linear model was adjusted to the first cut data between pressed juice total sugars and the ratio between reducing sugars and sucrose, which indicated a negative correlation among the variables. The data distribution suggested that compost fertilization induced a low ratio and higher sugar content in the stalk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbasi, M.K., N. Afsar, and N. Rahim. 2013. Effect of wood ash and compost application on nitrogen transformations and availability in soil-plant systems. Soil Science Society of America Journal 77: 558–567.

    Article  CAS  Google Scholar 

  • Almodares, A., R. Taheri, M. Chung, and M. Fathi. 2008. The effect of nitrogen and potassium fertilizers on growth parameters and carbohydrate contents of sweet sorghum cultivars. Journal of Enviromental Biology 29: 849–852.

    Google Scholar 

  • Amaducci, S., A. Monti, and G. Venturi. 2004. Non-structural carbohydrates and fiber components in sweet sorghum as affected by low and normal input techniques. Industrial Crops and Products 20: 111–118.

    Article  CAS  Google Scholar 

  • Amlinger, F., B. Götz, P. Dreher, J. Geszti, and C. Weissteiner. 2003. Nitrogen in biowaste and yard waste compost: Dynamics of mobilisation and availability-a review. European Journal of Soil Biology 39: 107–116.

    Article  CAS  Google Scholar 

  • Atalay, A., F.D. Favi. 2013. Salt tolerance of mycorrhiza sweet sorghum. Water, Food, Energy and Innovation for a Sustainable World, American Society of Agronomy-Crop Science Society of America-Soil Science Society of America, Poster 901, Tampa, Florida.

  • Averill, C., B.L. Turner, and A.C. Finzi. 2014. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505: 543–545.

    Article  CAS  PubMed  Google Scholar 

  • Bonanomi, G., V. Antignani, M. Capodilupo, and F. Scala. 2010. Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biology and Biochemistry 42: 136–144.

    Article  CAS  Google Scholar 

  • Bradford, M.A. 2014. Good dirt with good friends. Nature 505: 486–487.

    Article  CAS  PubMed  Google Scholar 

  • Cifuentes, R., R. de León, C. Porres, and C. Rolz. 2013. Windrow composting of waste sugar cane and press mud mixtures. Sugar Tech 15: 406–411.

    Article  Google Scholar 

  • Cifuentes, R., R. Bressani, and C. Rolz. 2014. The potential of sweet sorghum as a source of ethanol and protein. Energy and Sustainable Development 21: 13–19.

    Article  CAS  Google Scholar 

  • Diacono, M., and F. Montemurro. 2010. Long-term effects of organic amendments on soil fertility. A review. Agronomy and Sustainable Development 30: 401–422.

    Article  CAS  Google Scholar 

  • Erickson, J.E., Z.R. Helsel, K.R. Woodward, J.M.B. Vendramini, Y. Wang, L.E. Sollenberg, and R.A. Gilbert. 2011. Planting date affects biomass and brix of sweet sorghum grown for biofuel across Florida. Agronomy Journal 103: 1827–1833.

    Article  Google Scholar 

  • Erickson, J.E., K.R. Woodard, and L.E. Sollenberger. 2012. Optimizing sweet sorghum production for biofuel in the Southeastern USA through nitrogen fertilization and top removal. Bioenergy Research 5: 86–94.

    Article  Google Scholar 

  • Favoino, E., and D. Hogg. 2008. The potential role of compost in reducing greenhouse gases. Waste Managament and Research 26: 61–69.

    Article  CAS  Google Scholar 

  • Gale, L., J.R. Condon, M.K. Conyers, A.F. Sotuhwell, V.T. Guong. 2014. Agronomic benefits of combining inorganic phosphorus fertilizers with organic soil amendments. Acta Horticulturae 1018, ISHS, 307-314.

  • Geisseler, D., and K.M. Scow. 2014. Long-term effects of mineral fertilizers on soil microorganisms-A review. Soil Biology & Biochemistry 75: 54–63.

    Article  CAS  Google Scholar 

  • Gill, J.R., P.S. Burks, S.A. Staggenborg, G.N. Odvody, R.W. Heiniger, B. Macoon, K.J. Moore, M. Barret, and W.L. Rooney. 2014. Yield results and stability analysis from the Southern Regional Biomass Trial. Bioenergy Research 7: 1026–1034.

    Article  CAS  Google Scholar 

  • Goff, B.M., K.J. Moore, S.L. Fales, and E.A. Heaton. 2010. Double-cropping sorghum for biomass. Agronomy Journal 102: 1586–1592.

    Article  Google Scholar 

  • Han, L.P., Y. Steinberger, Y.L. Zhao, and G.H. Xie. 2011. Accumulation and partitioning of nitrogen, phosphorus and postassium in different varieties of sweet sorghum. Field Crops Research 120: 230–240.

    Article  Google Scholar 

  • Houx, J.H., and F.B. Fritschi. 2013. Influence of midsummer planting dates on ethanol production potential of sweet sorghum. Agronomy Journal 105: 1761–1768.

    Article  CAS  Google Scholar 

  • Kawahigashi, H., S. Kasuga, H. Okuizumi, S. Hiradate, and J. Yonemaru. 2013. Evaluation of brix and sugar content in stem juice from sorghum varieties. Grassland Science 59: 11–19.

    Article  CAS  Google Scholar 

  • Kouvelas, A.V., G. Aggelis, A.A. Alexopoulos, and K.C. Angelopoulos. 2014. Nitrogen dynamics during growth of sweet sorghum in response to conventional and organic soil fertility management. Australñian Journal of Crop Science 8: 730–737.

    CAS  Google Scholar 

  • Lingle, S.E., T.L. Tew, H. Rukavina, and D.L. Boykin. 2012. Post-harvest changes in sweet sorghum I: Brix and sugars. Bioenergy Research 5: 158–167.

    Article  CAS  Google Scholar 

  • Martínez-Blanco, J., C. Lazcano, T.H. Christensen, P. Muñoz, J. Rieradevall, J. Moller, A. Antón, and A. Boldrin. 2013. Compost benefits for agriculture evaluated by life cycle assessment. A review. Agronomy and Sustainable Development 33: 721–732.

    Article  Google Scholar 

  • Miller, A.N., and M.J. Ottman. 2010. Irrigation frequency effects on growth and ethanol yield in sweet sorghum. Agronomy Journal 102: 60–70.

    Article  Google Scholar 

  • Munirathnam, P., K. Ashok Kumar, and P. Srinivasa Rao. 2013. Performance of sweet sorghum varieties and hybrids during post rainy season in vertisols of scarce rainfall zone in Andhra Pradesh. Sugar Tech 15: 271–277.

    Article  Google Scholar 

  • Nuessley, G.S., Y. Wang, H. Sandhu, N. Larsen, and R.H. Cherry. 2013. Entomologic and agronomic evaluations of 18 sweet sorghum cultivars for biofuel in Florida. Florida Entomology 96: 512–528.

    Article  Google Scholar 

  • Qazi, H.A., S. Paranjpe, and S. Bhargava. 2012. Stem sugar accumulation in sweet sorghum—Activity and expression of sucrose metabolizing enzymes and sucrose transporters. Journal of Plant Physiology 169: 605–613.

    Article  CAS  PubMed  Google Scholar 

  • Rajendran, C., K. Ramamoorthy, and S. Backiyarani. 2000. Effect of deheading on juice quality characteristics and sugar yield of sweet sorghum. Journal of Agronomy and Crop Science 185: 23–26.

    Article  Google Scholar 

  • Rao, S.S., J.V. Patil, P.V.V. Prasad, D.C.S. Reddy, J.S. Mishra, A.V. Umakanth, B.V.S. Reddy, and A.A. Kumar. 2013a. Sweet sorghum planting effects on stalk yield and sugar quality in semi-arid tropical environment. Agronomy Journal 105: 1458–1465.

    Article  Google Scholar 

  • Rao, S.S., J.V. Patil, A.V. Umakanth, J.S. Mishra, C.V. Ratnavathi, G. Shyam Prasad, and B.D. Rao. 2013b. Comparative performance of sweet sorghum hybrids and open pollinated varieties for millable stalk yield, biomass, sugar quality traits, grain yield and bioethanol production in tropical Indian conditions. Sugar Tech 15: 250–257.

    Article  CAS  Google Scholar 

  • Rolz, C., R. de León, A.L. Mendizábal de Montenegro, and R. Cifuentes. 2014. Ethanol from sweet sorghum in a year-round production cycle. Biomass Conversion and Biorefinery 4: 341–350.

    Article  CAS  Google Scholar 

  • Rooney, W.L., J. Blumenthal, B. Bean, and J.E. Mullet. 2007. Designing sorghum as a dedicated bioenergy feedstock. Biofuels Bioproducts and Biorefinery 1: 147–157.

    Article  CAS  Google Scholar 

  • Russo, W.M., and W.W. Fish. 2012. Biomass, extracted liquid yields, sugar content or seed yields of biofuel feedstoacks as affected by fertilizer. Industrial Crops and Products 36: 555–559.

    Article  CAS  Google Scholar 

  • Rutto, L.K., Y. Xu, M. Brandt, S. Ren, and M.K. Kering. 2013. Juice, ethanol, and grain yield potential of five sweet sorghum cultivars. Jounal of Sustainable Bioenergy Systems 3: 113–118.

    Article  CAS  Google Scholar 

  • Sakellariou-Makrantonaki, M., and D.S. Dimakas. 2013. Effects of biosolids application on sweet sorghum biomass, water use efficiency an ethanol production. Fresenius Environmental Bulletin 22: 914–921.

    CAS  Google Scholar 

  • Sawargaonkar, G.L., M.D. Patil, S.R. Wani, E. Pavani, B.V.S.R. Reddy, and S. Marimuthu. 2013. Nitrogen response and water use efficiency of sweet sorghum cultivars. Field Crops Research 149: 245–251.

    Article  Google Scholar 

  • Serrão, M.G., M.R. Menino, J.C. Martins, N. Castanheir, M.E. Lourenco, I. Januario, M.L. Fernandes, and M.C. Goncalves. 2012. Mineral leaf composition of sweet sorghum in relation to biomass and sugar yields under different nitrogen and salinity conditions. Communications in Soil Science and Plant Analalysis 43: 2376–2388.

    Article  Google Scholar 

  • Sikora, L.J., and R.A.K. Szmidt. 2001. Nitrogen sources, mineralization rates, and nitrogen nutrition benefits to plants from composts. In Compost utilization in horticultural cropping systems, ed. P.J. Stoffella, and B.A. Kahn, 287–320. Boca Raton: Lewis Publishers.

    Google Scholar 

  • Sipos, B., J. Reczey, Z. Somorai, Z. Kadar, D. Dienes, and K. Reczey. 2009. Sweet sorghum as feedstock for ethanol production: Enzymatic hydrolysis of steam-pretreated bagasse. Applied Biochemistry and Biotechnology 153: 151–162.

    Article  CAS  PubMed  Google Scholar 

  • Teetor, V.H., D.V. Duclos, E.T. Wittenberg, K.M. Young, J. Chawhuaymak, M.R. Riley, and D.T. Ray. 2011. Effects of planting date on sugar and ethanol yield of sweet sorghum grown in Arizona. Industrial Crops and Products 34: 1293–1300.

    Article  CAS  Google Scholar 

  • Termorshuizen, A.J., S.W. Moolenaar, A.H.M. Veeken, and W.J. Blok. 2004. The value of compost. Review of Environmental Science and Bio/Technology 3: 343–347.

    Article  CAS  Google Scholar 

  • Tew, T.L., R.M. Cobill, and E.P. Richard. 2008. Evaluation of sweet sorghum and sorghum x sudan grass hybrids as feedstock for ethanol production. Bioenergy Research 1: 147–152.

    Article  Google Scholar 

  • Tsuchihashi, N., and Y. Goto. 2004. Cultivation of sweet sorghum and determination of its harvest time to make us as the raw material for fermentation, practice during rainy season of dry land of Indonesia. Plant Production Science 7: 442–448.

    Article  Google Scholar 

  • Vasilakoglou, I., K. Dhima, N. Karagiannidis, and T. Gatsis. 2011. Sweet sorghum productivity for biofuel increased soil salinity and reduced irrigation. Field Crops Research 120: 38–46.

    Article  Google Scholar 

  • Wortmann, C.S., A.J. Liska, R.B. Ferguson, D.J. Lyon, R.N. Klein, and I. Dweikat. 2010. Dryland performance of sweet sorghum and grain crops for biofuel in Nebraska. Agronomy Journal 102: 319–326.

    Article  CAS  Google Scholar 

  • Yang, L., B. Dun, X. Zhao, M. Yue, M. Lu, and G. Li. 2013. Correlation analysis between key enzymes activities and sugar content in sweet sorghum stems at physiological maturity stage. Australian Journal of Crop Science 7: 84–92.

    Google Scholar 

Download references

Acknowledgments

We appreciate the partial support of the United States Department of Agriculture (USDA) Food for Progress 10 Program and of the Guatemalan National Science Council (CONCYT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Rolz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cifuentes, R., de León, R., de Montenegro, A.L.M. et al. Compost Addition Effects upon Sweet Sorghum Biomass Productivity and Sugar Content. Sugar Tech 18, 168–175 (2016). https://doi.org/10.1007/s12355-015-0373-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-015-0373-2

Keywords

Navigation