Skip to main content
Log in

Cerebellar Loops: A Review of the Nucleocortical Pathway

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Feedback pathways are a common circuit motif in vertebrate brains. Reciprocal interconnectivity is seen between the cerebral cortex and thalamus as well as between basal ganglia structures, for example. Here, we review the literature on the nucleocortical pathway, a feedback pathway from the cerebellar nuclei to the cerebellar cortex, which has been studied anatomically but has remained somewhat obscure. This review covers the work examining this pathway on a number of levels, ranging from its existence in numerous species, its organization within cerebellar circuits, its cellular composition, and a discussion of its potential roles in motor control. Recent interest in cerebellar modular organization raises the profile of this neglected cerebellar pathway, and it is hoped that this review will consolidate knowledge gained over several decades of research into a useful format, spurring new investigations into this evolutionarily conserved pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tolbert DL, Bantli H, Bloedel JR. Anatomical and physiological evidence for a cerebellar nucleocortical projection in the cat. Neuroscience. 1976;1:205–17.

    Article  CAS  PubMed  Google Scholar 

  2. Gould BB, Graybiel AM. Afferents to the cerebellar cortex in the cat: evidence for an intrinsic pathway leading from the deep nuclei to the cortex. Brain Res. 1976;110:601–11.

    Article  CAS  PubMed  Google Scholar 

  3. Clarke PGH. Some visual and other connections to the cerebellum of the pigeon. JCN. 1977;174:535–52.

    CAS  Google Scholar 

  4. Tolbert DL, Bantli H, Bloedel JR. The intracerebellar nucleocortical projection in a primate. Exp Br Res. 1977;30:425–34.

    CAS  Google Scholar 

  5. Chan-Palay V, Palay SL, Wu JY. Gamma-aminobutyric acid pathways in the cerebellum studied by retrograde and anterograde transport of Glutamic acid decarboxylase antibody after in vivo injections. Anat Embryol. 1979;157:1–14.

    Article  CAS  PubMed  Google Scholar 

  6. Umetani T. Topographic organization of the cerebellar nucleocortical projection in the albino rat: an autoradiographic orthograde study. Brain Res. 1990;507:216–24.

    Article  CAS  PubMed  Google Scholar 

  7. Päälysaho J, Sugita S, Noda H. Cerebellar corticonuclear and nucleocortical projections in the vermis of posterior lobe of the rat as studied with anterograde and retrograde transport of WGA-HRP. Neurosci Res. 1990;8:158–78.

    Article  Google Scholar 

  8. Batini C, Compoint C, Buissert-Delmas C, Daniel H, Guegan M. Cerebellar nuclei and the nucleocortical projection in the rat: retrograde tracing coupled to GABA and glutamate immunohistochemistry. J Comp Neurol. 1992;315:74–84.

    Article  CAS  PubMed  Google Scholar 

  9. Yatim N, Buissert-Delmas C, Buissert P, Compoit C, Angaut P. Nucleus medialis-nucleus interpositus interface: its olivary and cerebellocortical projections in the rat. J Comp Neurol. 1995;363:1–14.

    Article  CAS  PubMed  Google Scholar 

  10. Haines DE, Pearson JC. Cerebellar corticonuclear-nucleocortical topography: a study of the tree shrew (Tupaia) paraflocculus. JCN. 1979;187:745–58.

    CAS  Google Scholar 

  11. Haines DE. Evidence of intracerebellar collateralization of nucleocortical cell processes in a prosimian primate (Galago): a fluorescence retrograde study. J Comp Neurol. 1988;275:441–51.

    Article  CAS  PubMed  Google Scholar 

  12. Hendelman WJ, Marshall KC. Axonal projection patterns visualized with horseradish peroxidase in organized cultures of cerebellum. Neuroscience. 1980;5:1833–46.

    Article  CAS  PubMed  Google Scholar 

  13. Haines DE, Manto MU. The discovery and definitive proof of cerebellar nucleocortical projections 1976. Cerebellum. 2009;8:1–18.

    Article  PubMed  Google Scholar 

  14. De H, Manto MU. The discovery and definitive proof of cerebellar nucleocortical projections: part 2, or the story continued and confirmed. Cerebellum. 2010;9:1–16.

    Article  Google Scholar 

  15. Ito M, Hongo T, Yoshida M, Okada Y, Obata K. Intracellularly recorded antidromic responses of Deiters’ neurons. Experientia. 1964;20:295–6.

    Article  CAS  PubMed  Google Scholar 

  16. Hámori J, Takács J. Two types of GABA-containing axon terminals in the cerebellar glomeruli of cat: an immunogold-EM study. Exp Br Res. 1989;74:471–9.

    Article  Google Scholar 

  17. Dietrichs E, Walberg F. The cerebellar corticonuclear and nucleocortical projections in the cat as studied with anterograde and retrograde transport of HRP. Anat Embryol. 1979;158:13–39.

    Article  CAS  PubMed  Google Scholar 

  18. Dietrichs E. The cerebellar corticonuclear and nucleocortical projections in the cat as studied with anterograde and retrograde transport of HRP. III: the anterior lobe. Anat Embryol. 1981;162:223–47.

    Article  CAS  PubMed  Google Scholar 

  19. Dietrichs E. The cerebellar corticonuclear and nucleocortical projections in the cat as studied with anterograde and retrograde transport of HRP IV: the paraflocculus. Exp Br Res. 1981;44:235–42.

    Article  CAS  Google Scholar 

  20. Dietrichs E. The cerebellar corticonuclear and nucleocortical projections in the cat as studied with anterograde and retrograde transport of HRP. V: the posterior lobe vermis and the floccular–nodular lobe. Anat Embryol. 1983;167:449–62.

    Article  CAS  PubMed  Google Scholar 

  21. Dietrichs E, Walberg F. The cerebellar corticonuclear and nucleocortical projections in the cat as studied with anterograde and retrograde transport of HRP. II: lobulus simplex, crus I and II. Anat Embryol. 1980;161:83–103.

    Article  CAS  PubMed  Google Scholar 

  22. Voogd J. Comparative aspects of the structure and fibre connexions of the mammalian cerebellum. Prog Brain Res. 1967;25:94–134.

    Article  CAS  PubMed  Google Scholar 

  23. Voogd J. The importance of fiber connections in the comparative anatomy of the mammalian cerebellum. In: Neurobiology of Cerebellar Evolution and Development. Llinás RR, editor. Am Med Assoc. 1969

  24. Gould BB. The organization of afferents to the cerebellar cortex in the cat: projection from the deep cerebellar nuclei. JCN. 1979;184:27–42.

    CAS  Google Scholar 

  25. Tolbert DL, Bantli H, Bloedel JR. Organizational features of the cat and monkey cerebellar nucleocortical projection. JCN. 1978;182:39–56.

    CAS  Google Scholar 

  26. Haines DE. HRP study of cerebellar corticonuclear-nucleocortical topography of the dorsal culminate lobule -lobule V- in a prosimian primate (Galago): with comments on nucleocortical cell types. JCN. 1989;282:274–92.

    CAS  Google Scholar 

  27. Buissert-Delmas C, Angaut P. The cerebellar nucleocortical projections in the rat: a retrograde labeling study using HRP combined to a lectin. Neurosci Lett. 1988;84:255–60.

    Article  Google Scholar 

  28. Buissert-Delmas C, Angaut P. Anatomical mapping of the cerebellar nucleocortical projections in the rat: a retrograde labeling study. JCN. 1989;288:297–310.

    Google Scholar 

  29. Angaut P, Compoint C, Buissert-Delmas C, Batini C. Synaptic connections of Purkinje cell axons with nucleocortical neurons in the cerebellar medial nucleus of the rat. Neurosci Res. 1996;26:345–98.

    Article  CAS  PubMed  Google Scholar 

  30. Trott JR, Apps R, Armstrong DM. Zonal organization of corticonuclear and nucleocortical projections of the paramedian lobule of the cat cerebellum 1. The C1 zone. Exp Br Res. 1998;118:298–315.

    Article  CAS  Google Scholar 

  31. Trott JR, Apps R, Armstrong DM. Zonal organization of cortico-nuclear and nucleo-cortical projections of the paramedian lobule of the cat cerebellum 2: the C2 zone. Exp Br Res. 1998;118:316–30.

    Article  CAS  Google Scholar 

  32. Provini L, Marcotti W, Morara S, Rosina A. Somatotopic nucleocortical projections to the multiple somatosensory cerebellar maps. Neuroscience. 1998;83:1085–104.

    Article  CAS  PubMed  Google Scholar 

  33. Tolbert DL, Bantli H. An HRP and autoradiographic study of cerebellar corticonuclear–nucleocortical reciprocity in the monkey. Exp Br Res. 1979;36:563–71.

    Article  CAS  Google Scholar 

  34. Chan-Palay V Cerebellar dentate nucleus: Organization, Cytology and Transmitters. Springer-Verlag; 1977

  35. Uusisaari M, Knöpfel T. GlyT2+ neurons in the lateral cerebellar nucleus. Cerebellum. 2010;9:42–55.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Uusisaari M, Obata K, Knöpfel T. Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei. J Neurophysiol. 2007;97:901–11.

    Article  CAS  PubMed  Google Scholar 

  37. Uusisaari M, Knöpfel T. GABAergic synaptic communication in the GABAergic and non-GABAergic cells in the deep cerebellar nuclei. Neuroscience. 2008;156:537–49.

    Article  CAS  PubMed  Google Scholar 

  38. Kodama T, Guerrero S, Shin M, Moghadam S, Faulstich M, du Lac S. Neuronal classification and marker gene identification via single-cell expression profiling of brainstem vestibular neurons subserving cerebellar learning. J Neurosci. 2012;32:7819–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Bagnall MW, Zingg B, Sakatos A, Moghadam SH, Zeilhofer HU, du Lac S. Glycinergic projection neurons of the cerebellum. J Neurosci. 2009;29:10104–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. McCrea RA, Bishop GA, Kitai ST. Morphological and electrophysiological characteristics of projection neurons in the nucleus interpositus of cat cerebellum. J Comp Neurol. 1978;181:397–420.

    Article  CAS  PubMed  Google Scholar 

  41. Kolston J, Apps R, Trott JR. A combined retrograde tracer and GABA-immunocytochemical study of the projection from nucleus interpositus posterior to the posterior lobe C2 zone of the cat cerebellum. Eur J Neurosci. 1995;7:926–33.

    Article  CAS  PubMed  Google Scholar 

  42. Zeilhofer HU, Studler B, Arabadzisz D, Schweizer C, Ahmadi S, Layh B, et al. Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. J Comp Neurol. 2005;482:123–41.

    Article  CAS  PubMed  Google Scholar 

  43. Tolbert DL, Bantli H, Bloedel JR. Multiple branching of cerebellar afferent projections in cats. Exp Br Res. 1978;31:305–16.

    Article  CAS  Google Scholar 

  44. Payne JN. The cerebellar nucleocortical projection in the rat studied by the retrograde fluorescent double labeling method. Brain Res. 1983;271:141–4.

    Article  CAS  PubMed  Google Scholar 

  45. Carrea RME. Reissig Mg, Mettler FA The climbing fibers of the simian and feline cerebellum experimental inquiry into their origin by lesions of the inferior olives and deep cerebellar nuclei. J Comp Neurol. 1947;87:321–65.

    Article  CAS  PubMed  Google Scholar 

  46. Cohen D, Chambers WW, Sprague JM. Experimental study of the efferent projections from the cerebellar nuclei to the brainstem of the cat. J Comp Neurol. 1958;109:233–59.

    Article  CAS  PubMed  Google Scholar 

  47. Haines DE, Dietrichs E. The Cerebellum – structure and connections. In: Subramony SM, Dürr A, editors. Handbook of Clinical Neurology Volume 103. Ataxic Disorders Elseiver, 2012. pp. 3-36

  48. Legendre A, Courville J. Cerebellar nucleocortical projection with a survey of factors affecting the transport of radioactive tracers. J Comp Neurol. 1986;252:392–403.

    Article  CAS  PubMed  Google Scholar 

  49. Tolbert DL, Kultas-Ilinsky K, Ilinsky I. EM-autoradiography of cerebellar nucleocortical terminals in the cat. Anat Embryol. 1980;161:215–23.

    Article  CAS  PubMed  Google Scholar 

  50. Hamori J, Mezey E, Szentagothai J. Electron microscopic identification of cerebellar nucleo-cortical mossy terminals in the rat. Exp Brain Res. 1981;44:97–100.

    Article  CAS  PubMed  Google Scholar 

  51. Miall RC, Weir DJ, Wolpert DM, Stein JF. Is the cerebellum a smith predictor? J Mot Behav. 1993;25:203–16.

    Article  CAS  PubMed  Google Scholar 

  52. Douglas RJ, Koch C, Mahowald M, Martin KA, Suarez HH. Recurrent excitation in neocortical circuits. Science. 1995;269:981–5.

    Article  CAS  PubMed  Google Scholar 

  53. Sherman SM, Guillery RW. Thalamus. In: Shepherd GM, editor. The synaptic organization of the brain. 5th ed. New York: Oxford Univ Press; 2004. p. 311–59.

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank C. Beitzel for the useful feedback on the manuscript. Work supported by NIH R01 NS084996-01, the Klingenstein Award in Neuroscience, and the Sloan Research Fellowship (ALP).

Conflict of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abigail L. Person.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houck, B.D., Person, A.L. Cerebellar Loops: A Review of the Nucleocortical Pathway. Cerebellum 13, 378–385 (2014). https://doi.org/10.1007/s12311-013-0543-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-013-0543-2

Keywords

Navigation