Skip to main content
Log in

Evolutionary Biosemiotics and Multilevel Construction Networks

  • Published:
Biosemiotics Aims and scope Submit manuscript

Abstract

In contrast to the traditional relational semiotics, biosemiotics decisively deviates towards dynamical aspects of signs at the evolutionary and developmental time scales. The analysis of sign dynamics requires constructivism (in a broad sense) to explain how new components such as subagents, sensors, effectors, and interpretation networks are produced by developing and evolving organisms. Semiotic networks that include signs, tools, and subagents are multilevel, and this feature supports the plasticity, robustness, and evolvability of organisms. The origin of life is described here as the emergence of simple self-constructing semiotic networks that progressively increased the diversity of their components and relations. Primitive organisms have no capacity to classify and track objects; thus, we need to admit the existence of proto-signs that directly regulate activities of agents without being associated with objects. However, object recognition and handling became possible in eukaryotic species with the development of extensive rewritable epigenetic memory as well as sensorial and effector capacities. Semiotic networks are based on sequential and recursive construction, where each step produces components (i.e., agents, scaffolds, signs, and resources) that are needed for the following steps of construction. Construction is not limited to repair and reproduction of what already exists or is unambiguously encoded, it also includes production of new components and behaviors via learning and evolution. A special case is the emergence of new levels of organization known as metasystem transition. Multilevel semiotic networks reshape the phenotype of organisms by combining a mosaic of features developed via learning and evolution of cooperating and/or conflicting subagents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. It is closely related to constructionism (Noss and Clayson 2015) and evolutionary epistemology (Riegler 2006).

  2. However, the statement would be wrong if truth is interpreted in metaphysical terms, because meaningful sign processes are possible even without true understanding of states-of-affairs (e.g., cooking recipes do not require any knowledge of thermodynamics).

  3. Bacteria have no real histones. However, they change DNA methylation to control their virulence and the cell cycle.

  4. Note, that relational semiotics assumes the existence of signs even in the physical world devoid of life (Deely 1992).

  5. I do not discuss scenarios based on self-replicating nucleic acids, such as RNA-world (Gilbert 1986), because naturally-synthesized nucleotides are too rare and unstable to support self-replication (Sharov and Gordon 2013).

  6. Recent discovery of alcohol and sugar on the comet Lovejoy (Biver et al. 2015) is interesting, but it does not prove that primordial organisms used carbohydrates of abiotic origin as resources. It is very unlikely that life originated on a small comet. And if a comet lands on a planet, organic chemicals would immediately degrade or become diluted.

  7. Here I do not consider products of synthetic biology because all artificial living systems were not engineered from scratch but copied from natural organisms.

References

  • Anderson, M., Deely, J., Krampen, M., Ransdell, J., Sebeok, T. A., & Uexküll, T. v. (1984). A semiotic perspective on the sciences: steps toward a new paradigm. Semiotica, 52(1/2), 7–47.

    Google Scholar 

  • Armus, H. L., Montgomery, A. R., & Gurney, R. L. (2006). Discrimination learning and extinction in paramecia (P. caudatum). Psychological Reports, 98(3), 705–711.

    Article  PubMed  Google Scholar 

  • Baldwin, M. J. (1896). A new factor in evolution. American Naturalist, 30, 441–451.

    Article  Google Scholar 

  • Barbieri, M. (2003). The organic codes: An introduction to semantic biology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Barbieri, M. (2008). Biosemiotics: a new understanding of life. Die Naturwissenschaften, 95(7), 577–599.

    Article  CAS  PubMed  Google Scholar 

  • Berthoz, A. (2012). Simplexity: Simplifying priciples for a complex world (G. Weiss, Trans.). New Haven: Yale University Press.

    Book  Google Scholar 

  • Bickhard, M. H. (2005). Functional scaffolding and self-scaffolding. New Ideas in Psychology, 23, 166–173.

    Article  Google Scholar 

  • Biver, N., Bockelée-Morvan, D., Moreno, R., Crovisier, J., Colom, P., Lis, D. C., et al. (2015). Ethyl alcohol and sugar in comet C/2014 Q2 (Lovejoy). Science Advances, 1(9), e1500863.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bright, M., & Bulgheresi, S. (2010). A complex journey: transmission of microbial symbionts. Nature Reviews Microbiology, 8(3), 218–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruni, L. E. (2008). Cellular semiotics and signal transduction. In M. Barbieri (Ed.), Introduction to biosemiotics. The new biological synthesis (pp. 365–407). Dordrecht: Springer.

    Google Scholar 

  • Cariani, P. (1998). Towards an evolutionary semiotics: The emergence of new sign-functions in organisms and devices. In S. S. G. Van de Vijver & M. Delpos (Eds.), Evolutionary systems (pp. 359–377). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Compain, P. (2003). Le pari de la simplexité. Le simple et le complexe en synthèse organique. L’Actualité Chimique(4-5), 129–134.

  • Core, A., Runckel, C., Ivers, J., Quock, C., Siapno, T., Denault, S., et al. (2012). A new threat to honey bees, the parasitic phorid fly Apocephalus borealis. PLoS One, 7(1), e29639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corthay, A. (2014). Does the immune system naturally protect against cancer? Frontiers in Immunology, 5, 197.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dawkins, R. (1976). The selfish gene. Oxford: Oxford University Press.

    Google Scholar 

  • Deely, J. (1992). Semiotics and biosemiotics: Are sign-science and life-science coextensive? In T. A. Sebeok & J. Umiker-Sebeok (Eds.), Biosemiotics. The semiotic web 1991 (pp. 45–75). New York: Mouton de Gruyter.

    Google Scholar 

  • Dewey, J. (1998). The development of American pragmatism. In T. M. A. L. A. Hickman (Ed.), The essential Dewey (vol. 1). Bloomengton: Indiana Univ. Press.

    Google Scholar 

  • Gardner, M. (1970). Mathematical games – the fantastic combinations of John Conway’s new solitaire game “life”. Scientific American, 223, 120–123.

    Article  Google Scholar 

  • Gilbert, W. (1986). Origin of life: the RNA world. Nature, 319(6055), 618.

    Article  Google Scholar 

  • Ginsburg, S., & Jablonka, E. (2009). Epigenetic learning in non-neural organisms. Journal of Biosciences, 34(4), 633–646.

    Article  CAS  PubMed  Google Scholar 

  • Hennessey, T. (1979). Classical conditioning in paramecia. Animal Learning & Behavior, 7, 419–423.

    Article  Google Scholar 

  • Hoffmeyer, J. (1996). Signs of meaning in the universe. Bloomington: IndianaUniversity Press.

    Google Scholar 

  • Hoffmeyer, J. (2008). Biosemiotics: An examination into the signs of life and the life of signs Scranton. PA: University of Scranton Press.

    Google Scholar 

  • Hoffmeyer, J. (2010). Semiotics of nature. In P. Cobley (Ed.), The Routledge companion to semiotics (pp. 29–42). London: Routledge.

    Google Scholar 

  • Hoffmeyer, J., & Emmeche, C. (1991). Code-duality and the semiotics of nature. In M. Anderson & F. Merrell (Eds.), On semiotic modeling (pp. 117–166). Berlin: Mouton de Gruyter.

    Google Scholar 

  • Hoffmeyer, J., & Stjernfelt, F. (2016). The great chain of semiosis. investigating the steps in the evolution of semiotic competence,” Jesper Hoffmeyer and Frederik Stjernfelt. Biosemiotics, 9(1). doi: 10.1007/s12304-015-9247-y.

  • Ingram, W. M., Goodrich, L. M., Robey, E. A., & Eisen, M. B. (2013). Mice infected with low-virulence strains of Toxoplasma gondii lose their innate aversion to cat urine, even after extensive parasite clearance. PLoS One, 8(9), e75246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James, W. (1954). Essays in pragmatism. New York: Hafner Pub. Co.

    Google Scholar 

  • Kauffman, S. A. (1986). Autocatalytic sets of proteins. Journal of Theoretical Biology, 119(1), 1–24.

    Article  CAS  PubMed  Google Scholar 

  • Kauffman, S. A. (2014). Prolegomenon to patterns in evolution. Biosystems, 123, 3–8.

    Article  PubMed  Google Scholar 

  • Klir, G. J. (1991). Facets of systems science (Vol. 7, IFSR International Series on Systems Science and Engineering). New York, London: Springer.

    Google Scholar 

  • Koonin, E. V., & Galperin, M. Y. (2003). Sequence - evolution - function: Computational approaches in comparative genomics. Boston: Kluwer Academic.

    Book  Google Scholar 

  • Kull, K. (2009). Vegetative, animal, and cultural semiosis: the semiotic threshold zones. Cognitive Semiotics, 4, 8–27.

    Article  Google Scholar 

  • Langton, C. G. (1984). Self-reproduction in cellular automata. Physica D, 10, 135–144.

    Article  Google Scholar 

  • Liu, C. H., & Matthews. (2005). Vygotsky’s philosophy: constructivism and its criticisms examined. International Education Journal, 6(3), 386–399.

    Google Scholar 

  • Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., & Darnell, J. (2000). Molecular cell biology (4th ed.). New York: W. H. Freeman and Co.

    Google Scholar 

  • Maturana, H., & Varela, F. (1980). Autopoiesis and cognition: The realization of the living (Vol. 42, Boston Studies in the Philosophy of Science). Dordecht: D. Reidel Publishing Co.

    Book  Google Scholar 

  • Minsky, M. (1986). The society of mind. New York: Simon and Schuster.

    Google Scholar 

  • Morris, C. W. (1964). Signification and significance: A study of the relations of signs and values. Cambridge: MIT Press.

    Google Scholar 

  • Murchison, E. P., Wedge, D. C., Alexandrov, L. B., Fu, B., Martincorena, I., Ning, Z., et al. (2014). Transmissible dog cancer genome reveals the origin and history of an ancient cell lineage. Science, 343(6169), 437–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noss, R., & Clayson, J. (2015). Reconstructing constructionism. Constructivist Foundations, 10(3), 285–288.

    Google Scholar 

  • Peirce, C. S. (1976). The new elements of mathematics. Atlantic Highlands: Humanities Press.

    Google Scholar 

  • Pershin, Y. V., La Fontaine, S., & Di Ventra, M. (2009). Memristive model of amoeba learning. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 80(2 Pt 1), 021926.

    Article  PubMed  Google Scholar 

  • Piaget, J., & Garcia, R. (1989). Psychogenesis and the history of science. New York: Columbia University Press.

    Google Scholar 

  • Prodi, G. (1988). Material bases of signification. Semiotica, 69(3/4), 191–241.

    Google Scholar 

  • Puigbo, P., Wolf, Y. I., & Koonin, E. V. (2013). Seeing the tree of life behind the phylogenetic forest. BMC Biology, 11, 46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riegler, A. (2006). Like cats and dogs: Radical constructivism and evolutionary epistemology. In J. P. V. B. N. Gontier & D. Aerts (Eds.), Evolutionary epistemology, language and culture (pp. 47–65). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Rosen, R. (1991). Life itself: a comprehensive inquiry into the nature, origin, and fabrication of life. New York: Columbia University Press.

    Google Scholar 

  • Saigusa, T., Tero, A., Nakagaki, T., & Kuramoto, Y. (2008). Amoebae anticipate periodic events. Physical Reviews Letters, 100(1), 018101.

    Article  Google Scholar 

  • Schlosser, G., & Wagner, G. P. (2004). Introduction: The modularity concept in developmental and evolutionary biology. In G. Schlosser & G. P. Wagner (Eds.), Modularity in development and evolution (pp. 1–11). Chicago: University of Chicago Press.

    Google Scholar 

  • Schrödinger, E. (1940). What is life? The physical aspect of the living cell. Cambridge: Cambridge University Press.

    Google Scholar 

  • Sharov, A. A. (1992). Biosemiotics: functional-evolutionary approach to the problem of the sense of information. In T. A. Sebeok & J. Umiker-Sebeok (Eds.), Biosemiotics. The semiotic web 1991 (pp. 345–373). New York: Mouton de Gruyter.

    Google Scholar 

  • Sharov, A. A. (2001). Umwelt theory and pragmatism. Semiotica, 134, 211–228.

    Google Scholar 

  • Sharov, A. A. (2009). Coenzyme autocatalytic network on the surface of oil microspheres as a model for the origin of life. [Article]. International Journal of Molecular Sciences, 10(4), 1838–1852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharov, A. A. (2010). Functional information: Towards synthesis of biosemiotics and cybernetics. Entropy, 12(5), 1050–1070.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharov, A. A. (2013). Minimal mind. In L. Swan (Ed.), Origins of mind (pp. 343–360). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Sharov, A. A. (2014). Evolutionary constraints or opportunities? Biosystems, 123, 9–18.

    Article  PubMed  Google Scholar 

  • Sharov, A. A. (2016a). Coenzyme world model of the origin of life. Biosystems, 144, 8–17.

    Article  CAS  PubMed  Google Scholar 

  • Sharov, A. A. (2016b). Evolution of natural agents: preservation, advance, and emergence of functional information. Biosemiotics, 8. doi: 10.1007/s12304-015-9250-3.

  • Sharov, A. A., & Gordon, R. (2013). Life before earth. http://arxiv.org/ftp/arxiv/papers/1304/1304.3381.pdf2013.

  • Sharov, A. A., & Vehkavaara, T. (2015). Protosemiosis: agency with reduced representation capacity. Biosemiotics, 8(1), 103–123.

    Article  PubMed  Google Scholar 

  • Tobias, S., & Duffy, T. M. (2009). Constructivist instruction: Success or failure? New York: Taylor & Francis.

    Google Scholar 

  • True, J. R. (2003). Insect melanism: the molecules matter. Trends in Ecology and Evolution, 18(12), 640–647.

    Article  Google Scholar 

  • Turchin, V. F. (1977). The phenomenon of science. New York: Columbia University Press.

    Google Scholar 

  • Uexküll, J. v. (1982). The theory of meaning. Semiotica, 42(1), 25–82.

    Google Scholar 

  • van’t Hof, A. E., & Saccheri, I. J. (2010). Industrial melanism in the peppered moth is not associated with genetic variation in canonical melanisation gene candidates. PLoS One, 5(5), e10889.

    Article  Google Scholar 

  • Villareal, L. P. (2009). Origin of group identity. Viruses, addiction and cooperation. New York: Springer.

    Google Scholar 

  • von Neumann, J. (1966). Theory of self-reproducing automata. Urbana: University of Illinois Press.

    Google Scholar 

  • Wächtershäuser, G. (1988). Before enzymes and templates: theory of surface metabolism. Microbiological Reviews, 52(4), 452–484.

    PubMed  PubMed Central  Google Scholar 

  • Waddington, C. H. (1968). Towards a theoretical biology. Nature, 218(5141), 525–527.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, G. P. (1996). Homologues, natural kinds and the evolution of modularity. American Zoologist, 36, 36–43.

    Article  Google Scholar 

  • Wittkopp, P. J., True, J. R., & Carroll, S. B. (2002). Reciprocal functions of the Drosophila yellow and ebony proteins in the development and evolution of pigment patterns. Development, 129(8), 1849–1858.

    CAS  PubMed  Google Scholar 

  • Yamasaki, S., Stoecklin, G., Kedersha, N., Simarro, M., & Anderson, P. (2007). T-cell intracellular antigen-1 (TIA-1)-induced translational silencing promotes the decay of selected mRNAs. Journal of Biological Chemistry, 282(41), 30070–30077.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This paper was supported entirely by the Intramural Research Program of the National Institute on Aging (NIA/NIH), project Z01 AG000656-13. The content of the paper is not endorsed by the funding organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei A. Sharov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharov, A.A. Evolutionary Biosemiotics and Multilevel Construction Networks. Biosemiotics 9, 399–416 (2016). https://doi.org/10.1007/s12304-016-9269-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12304-016-9269-0

Keywords

Navigation