Skip to main content
Log in

Epigenetic learning in non-neural organisms

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Learning involves a usually adaptive response to an input (an external stimulus or the organism℉s own behaviour) in which the input-response relation is memorized; some physical traces of the relation persist and can later be the basis of a more effective response. Using toy models we show that this characterization applies not only to the paradigmatic case of neural learning, but also to cellular responses that are based on epigenetic mechanisms of cell memory. The models suggest that the research agenda of epigenetics needs to be expanded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramson C I, Garrido D J, Lawson A L, Browne B L and Thomas D G 2002 Bioelectrical potentials of Philodendron cordatum: a new method for investigation of behavior in plants; Psychol. Rep. 9 173–185

    Article  Google Scholar 

  • Agrawal A A, Laforsch C and Tollrian R 1999 Transgenerational induction of defences in animals and plants; Nature (London) 401 60–63

    Article  CAS  Google Scholar 

  • Allen N D, Norris M L and Surani M A 1990 Epigenetic control of transgene expression and imprinting by genotype-specific modifiers; Cell 61 853–861

    Article  CAS  Google Scholar 

  • Allis C D, Jenuwein T, Reinberg D and Caparros M-L 2007 Epigenetics (New York: Cold Spring Harbor Laboratory Press)

    Google Scholar 

  • Anway M D, Cupp A S, Uzumcu M and Skinner M K 2005 Epigenetic transgenerational actions of endocrine disruptors and mate fertility; Science 308 1466–1469

    Article  CAS  Google Scholar 

  • Anway M D, Memon M A, Uzumcu M and Skinner M K 2006 Transgenerational effect of the endocrine disruptor vinclozolin on male spermatogenesis; J. Androl. 27 868–879

    Article  CAS  Google Scholar 

  • Applewhite P B 1975 Learning in bacteria, fungi and plants; in Invertebrate learning Vol 3: Cephalopods and echinoderms (eds) W C Corning, J A Dyal and A O D Willows (New York: Plenum Press) pp 179–186

    Google Scholar 

  • Armus H L, Montgomery A R and Jellison J L 2006 Discrimination learning in paramecia (P. caudatum); Psychol. Rec. 56 489–498

    Article  Google Scholar 

  • Balaban N Q, Merrin J, Chait R, Kowalik L and Leibler S 2004 Bacterial persistence as a phenotypic switch; Science 305 1622–1625

    Article  CAS  Google Scholar 

  • Bernstein E and Allis C D 2005 RNA meets chromatin; Genes Dev. 19 1635–1655

    Article  CAS  Google Scholar 

  • Cavalier-Smith T 2004 The membranome and membrane heredity in development and evolution; in Organelles, genomes and eukaryote phylogeny (eds) R P Hirt and D S Horner (Boca Raton, Fl: CRC Press) pp 335–351

    Chapter  Google Scholar 

  • Csaba G 2008 Hormonal imprinting: phylogeny, ontogeny, diseases and possible role in present-day human evolution; Cell Biochem. Funct. 26 1–10

    Article  CAS  Google Scholar 

  • Csaba G and Kovacs P 1990 Impact of 5-azacytidine on insulin binding and insulin-induced receptor formation in Tetrahymena; Biochem. Biophys. Res. Commun. 168 709–713

    Article  CAS  Google Scholar 

  • Csaba G and Kovacs P 1995 Insulin treatment (hormonal imprinting) increases the insulin production of the unicellular Tetrahymena long term. Is there a simultaneous formation of hormone receptor and hormone?; Cell. Biol. Int. 19 1011–1014

    Article  CAS  Google Scholar 

  • Cubas P, Vincent C and Coen E 1999 An epigenetic mutation responsible for natural variation in floral symmetry; Nature (London) 401 157–161

    Article  CAS  Google Scholar 

  • Dor Y, Brown J, Martinez O I and Melton D A 2004 Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation; Nature (London) 429 41–46

    Article  CAS  Google Scholar 

  • Dyal J A and Corning W C 1973 Invertebrate learning and behavior taxonomies; in Invertebrate learning Vol 1: Protozoans through annelids (eds) W C Corning, J A Dyal and A O D Willows (New York: Plenum Press) pp 1–48

    Google Scholar 

  • Eisenstein E M, Eisenstein D and Smith J C 2001 The evolutionary significance of habituation and sensitization across phylogeny: a behavioral homeostasis model; Integr. Physiol. Behav. Sci. 36 251–265

    Article  Google Scholar 

  • Ettinger L and Doljanski F 1992 On the generation of form by the continuous interactions between cells and their extracellular matrix; Biol. Rev. Camb. Philos. Soc. 67 459–489

    Article  CAS  Google Scholar 

  • Gilbert S F 2006 Developmental biology 8th edition (Sunderland, MA: Sinauer Associates)

    Google Scholar 

  • Ginsburg S and Jablonka E 2007 The transition to experiencing: I. Limited learning and limited experiencing; Biol. Theory 2 218–230

    Article  Google Scholar 

  • Gluckman P and Hanson M 2005 The fetal matrix: Evolution, development and disease (Cambridge, UK: Cambridge University Press)

    Google Scholar 

  • Gluckman P D, Hanson M A and Beedle A S 2007 Non-genomic transgenerational inheritance of disease risk; BioEssays 29 145–154

    Article  CAS  Google Scholar 

  • Gräff J and Mansuy I M 2008 Epigenetic codes in cognition and behavior; Behav. Brain Res. 192 70–87

    Article  Google Scholar 

  • Grimes G W and Aufderheide K J 1991 Cellular aspects of pattern formation: the problem of assembly; Monogr. Dev. Biol. 22 1–94

    CAS  PubMed  Google Scholar 

  • Hawkins R D, Kandel E R and Bailey C H 2006 Molecular mechanisms of memory storage in Aplysia; Biol. Bull. 210 174–191

    Article  CAS  Google Scholar 

  • Heard E 2005 Delving into the diversity of facultative heterochromatin: the epigenetics of the inactive X chromosome; Curr. Opin. Genet. Dev. 15 482–489

    Article  CAS  Google Scholar 

  • Hinkle D J and Wood D C 1994 Is tube-escape learning by protozoa associative learning?; Behav. Neurosci. 108 94–99

    Article  CAS  Google Scholar 

  • Hoffer S M, Westerhoff H V, Hellingwerf K J, Postma P W and Tommassen J 2001 Autoamplification of a two-component regulatory system results in “learning” behavior; J. Bacteriol. 183 4914–4917

    Article  CAS  Google Scholar 

  • Holliday R 1994 Epigenetics: an overview; Dev. Genet. 15 453–457

    Article  CAS  Google Scholar 

  • Jablonka E and Lamb M J 1995 Epigenetic inheritance and evolution: The Lamarckian dimension (Oxford: Oxford University Press)

    Google Scholar 

  • Jablonka E and Lamb M J 2005 Evolution in four dimensions: Genetic, epigenetic, behavioral, and symbolic variation in the history of life (Cambridge, MA: MIT Press)

    Google Scholar 

  • Jablonka E and Lamb M J 2007a Précis of Evolution in Four Dimensions; Behav. Brain Sci. 30 353–365

    PubMed  Google Scholar 

  • Jablonka E and Lamb M J 2007b Bridging the gap: the developmental aspects of evolution; Behav. Brain Sci. 30 378–392

    Google Scholar 

  • Jablonka E and Raz G 2008 Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity; Q. Rev. Biol. (in press)

  • Jollos V 1921 Experimentelle Protistenstudien 1. Untersuchungen über Varabilität und Vererbung bei Infusorien; Arch. Protistenkunde 43 1–222

    Google Scholar 

  • Kirschner M W and Gerhardt J C 2005 The plausibility of life: Resolving Darwin’s dilemma (New Haven, CT: Yale University Press)

    Google Scholar 

  • Kirk D L 1998 Volvox: Molecular-genetic origins of multicellularity and cellular differentiation (Cambridge, UK: Cambridge University Press)

    Google Scholar 

  • Kohidai L, Csaba G and Laszlo V 1990 Persistence of receptor “memory” induced in Tetrahymena by insulin imprinting; Acta Microbiol. Hung. 37 269–275

    CAS  PubMed  Google Scholar 

  • Lachmann M and Jablonka E 1996 The inheritance of phenotypes: an adaptation to fluctuating environments. J. Theor. Biol. 181 1–9

    Article  CAS  Google Scholar 

  • Levenson J M and Sweatt J D 2005 Epigenetic mechanisms in memory formation; Nat. Rev. Neurosci. 6 108–118

    Article  CAS  Google Scholar 

  • Lewis K 2007 Persister cells, dormancy and infectious disease; Nat. Rev. Microbiol. 5 48–56

    Article  CAS  Google Scholar 

  • Matzke M A and Birchler J A 2005 RNAi-mediated pathways in the nucleus; Nat. Rev. Genet. 6 24–35

    Article  CAS  Google Scholar 

  • Meaney M J 2001 Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations; Annu. Rev. Neurosci. 24 1161–1192

    Article  CAS  Google Scholar 

  • Meyer E and Chalker D L 2007 Epigenetics of ciliates; in Epigenetics (eds) D C Allis, T Jenuwein, D Reinberg and M-L Caparros (New York: Cold Spring Harbor Laboratory Press) pp 127–150

    Google Scholar 

  • Miller C A and Sweatt D W 2007 Covalent modification of DNA regulates memory formation; Neuron 53 857–869

    Article  CAS  Google Scholar 

  • Mochizuki K and Gorovsky M A 2004 Small RNAs in genome rearrangement in Tetrahymena; Curr. Opin. Genet. Dev. 14 181–187

    Article  CAS  Google Scholar 

  • Morange M 2006 What history tells us VI. The transfer of behaviours by macromolecules; J. Biosci. 31 323–327

    Article  CAS  Google Scholar 

  • Nowacki M, Vijajan V, Zhou Y, Schotanus K, Doak T G and Landweber L F 2008 RNA-mediated epigenetic programming of a genome rearrangement pathway; Nature (London) 451 153–159

    Article  CAS  Google Scholar 

  • Rando O J and Verstrepen K J 2007 Timescales of genetic and epigenetic inheritance; Cell 128 655–668

    Article  CAS  Google Scholar 

  • Razran G 1971 Mind in evolution: an East-West synthesis of learned behavior and cognition (Boston: Houghton Mifflin)

    Google Scholar 

  • Saigusa T, Tero A, Nakagaki T and Kuramoto Y 2008 Amoebae anticipate periodic events; Phys. Rev. Lett. 100 [018101]

    Article  Google Scholar 

  • Schacter D L 2001 Forgotten ideas, neglected pioneers (Philadelphia: Psychology Press)

    Google Scholar 

  • Shorter J and Lindquist S 2005 Prions as adaptive conduits of memory and inheritance; Nat. Rev. Genet. 6 435–450

    Article  CAS  Google Scholar 

  • Si K, Lindquist S and Kandel E R 2003 A neuronal isoform of the Aplysia CPEB has prion-like properties; Cell 115 879–891

    Article  CAS  Google Scholar 

  • Sung S and Amasino R M 2004 Vernalization and epigenetics: how plants remember winter; Curr. Opin. Plant Biol. 7 4–10

    Article  CAS  Google Scholar 

  • Tagkopoulos I, Liu Y-C and Tavazoie S 2008 Predictive behavior within microbial genetic networks; Science 320 1313–1317

    Article  CAS  Google Scholar 

  • Trewavas, A 2003. Aspects of plant intelligence. Ann. Bot. 92 1–20

    Article  CAS  Google Scholar 

  • Weaver I C G, Cervoni N, Champagne F A, D’Alessio A C, Sharma S, Seckl J R, Dymov S, Szyf M and Meaney M J 2004 Epigenetic programming by maternal behavior; Nat. Neurosci. 7 847–854

    Article  CAS  Google Scholar 

  • Weaver I C G, Champagne F A, Brown S E, Dymov S, Sharma S, Meaney M J and Szyf M 2005 Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life; J. Neurosci. 25 11045–11054

    Article  CAS  Google Scholar 

  • Wickner R B, Edskes H K, Ross E D, Pierce M M, Baxa U, Brachmann A and Shewmaker F 2004 Prion genetics: new rules for a new kind of gene; Ann. Rev. Genet. 38 681–707

    Article  CAS  Google Scholar 

  • Wood D C 1988a Habituation in Stentor: a response-dependent process; J. Neurosci. 8 2248–2253

    Article  CAS  Google Scholar 

  • Wood D C 1988b Habituation in Stentor: produced by mechanoreceptor channel modification; J. Neurosci. 8 2254–2258

    Article  CAS  Google Scholar 

  • Wood D C 1992 Learning and adaptive plasticity in unicellular organisms; in Encyclopedia of learning and memory (ed.) L R Squire (New York: Macmillan) pp 623–624

    Google Scholar 

  • Zacharioudakis I, Gligoris T and Tzamarias D 2007 A yeast catabolic enzyme controls transcriptional memory; Curr. Biol. 17 2041–2046

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Ginsburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ginsburg, S., Jablonka, E. Epigenetic learning in non-neural organisms. J Biosci 34, 633–646 (2009). https://doi.org/10.1007/s12038-009-0081-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-009-0081-8

Keywords

Navigation