Skip to main content
Log in

Shrinkage reduction and morphological characterization of PP reinforced with glass fiber and nanoclay using functionalized PP as compatibilizer

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

This work presents results of shrinkage and structure characteristics of reinforced PP using combinations of glass fiber and nanoclay with functionalized PP as compatibilizer during injection molding. Shrinkage, warpage and structure characteristics of clay-fiber reinforced nanocomposites using PP grafted with 2-[2- (Dimethylamino) ethoxy] ethanol (DMAE) to obtain PPgDMAE as compatibilizer, were analyzed. The glass fiber-nanoclay combinations decrease the PP shrinkage as well as the warpage tendency. Functionalized PP facilitates glass fiber and clay dispersion and intercalation. The crystallization temperature, Tc, increases slightly with respect to pure PP and the degree of crystallinity, Xc, was reduced with the clay content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fischer JM (2003) Handbook of molded parts shrinkage and warpage. William Andrew Publishing/Plastics Design Library, Norwich

    Google Scholar 

  2. Mendelkern YL (2004) Crystallization of polymers, kinetics and mechanisms. Cambridge university press, Cambridge UK

    Book  Google Scholar 

  3. Ram A, Tadmor Z, Schwartz M (1977) Orientation and Shrinkability in Polymers. Intl J of Polym Materials and Polym Biomaterials; 6:57–71

    Article  Google Scholar 

  4. Hassan H, Regnier N, Pujos C, Arquis E, Defaye G (2010) Modeling the effect of cooling system on shrinkage and temperature of the polymer by injection molding. Appl Therm Eng 30:1547–1557

    Article  Google Scholar 

  5. Rubin I (1972) Injection Molding Theory and Practice. John Wiley and Sons, New York

    Google Scholar 

  6. Jansen KMB, Pantani R, Titomanlio G (1998) As-molded shrinkage measurements on polystyrene injection molded products. Polym Eng Sci 38:254–264

    Article  Google Scholar 

  7. Chang TC (2001) Shrinkage behavior and optimization of injection molded parts studied by the Taguchi method. Polym Eng Sci 41:703–710

    Article  Google Scholar 

  8. Liao SJ, Chang DY, Chen HJ, Tsou LS, Ho JR, Yau HT, Hsieh WH, Wang JT, Su YC (2004) Optimal process conditions of shrinkage and warpage of thin-wall parts. Polym Eng Sci 44:917–928

    Article  Google Scholar 

  9. Fujiyama M, Kitajima Y, Inata H (2002) Structure and properties of injection-molded polypropylenes with different molecular weight distribution and tacticity characteristics. J Appl Polym Sci 84:2142–2156

    Article  Google Scholar 

  10. Rahman WAWA, Sin LT, Rahmat AR (2008) Injection molding simulation analysis of natural fiber composite window frame. J Mater Process Technol 197:22–30

    Article  Google Scholar 

  11. Chen CP, Chuang MT, Hsiao YH, Yang YK, Tsai CH (2009) Simulation and experimental study in determining injection molding process parameters for thin-shell plastic parts via design of experiments analysis. Expert Syst Appl 36:10752–10759

    Article  Google Scholar 

  12. Azdast T, Behravesh AH, Mazaheri K, Darvishi MM (2008) Numerical simulation and experimental validation of residual stress induced constrained shrinkage of injection molded parts. Polimery 53:304–310

    Google Scholar 

  13. Kwon K, Isayev AI, Kim KH, Sweden CV (2006) Theoretical and experimental studies of anisotropic shrinkage in injection moldings of semicrystalline polymers. Polym Eng Sci 12:712–728

    Article  Google Scholar 

  14. Pomerleau J, Sanschagrin B (2006) Injection molding shrinkage of PP: Experimental progress. Polym Eng Sci 46:1275–1283

    Article  Google Scholar 

  15. Malloy R (1994) Plastic part design for injection molding. Hanser Gardner Publ, New York

    Google Scholar 

  16. Njuguna J, Pielichowski K, Desai S (2008) Nanofiller-reinforced polymer nanocomposites. Polym Adv Technol 19:947–959

    Article  Google Scholar 

  17. Lui L, Qi Z, Zhu X (1999) Studies on nylon 6/clay nanocomposites by melt-intercalation process. J Appl Polym Sci 71:1133–1138

    Article  Google Scholar 

  18. Dennis H, Hunter D, Chang D, Kim S, White J, Cho J, Paul DR (2001) Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites. Polymer 42:9513–9522

    Article  Google Scholar 

  19. Garcia-Lopez D, Picazo O, Merino JC, Pastor JM (2003) Polypropylene-clay nanocomposites: effect of compatibilizing agents on clay dispersion. Polym J 39:945–950

    Google Scholar 

  20. Ramirez-Vargas E, Sanchez-Valdes S, Parra-Tabla O, Castañeda-Gutierrez S, Mendez-Nonell J, Ramos de Valle LF, Lopez-Leon A, Lujan-Acosta R (2012) Structural Characterization of LDPE/EVA Blends Containing Nanoclay-Flame Retardant Combinations. J Appl Polym Sci 123:1125–1136

    Article  Google Scholar 

  21. Galgali G, Ramesh C, Lele A (2001) A Rheological Study on the Kinetics of Hybrid Formation in Polypropylene Nanocomposites 34:852–858.

  22. Wang KH, Choi MH, Koo CM, Choi YS, Chung IJ (2001) Synthesis and characterization of maleated polyethylene/clay nanocomposites. Polymer 42:9819–9826

    Article  Google Scholar 

  23. Sanchez-Valdes S, Ramirez-Vargas E, Ramos de Valle LF, Mendez-Nonell J, Medellin-Rodriguez FJ, Martinez-Colunga JG, Vazquez-Rodriguez S, Betancurt-Galindo R, Ibarra-Alonso MC (2012) Itaconic acid and amino alcohol functionalized polyethylene as compatibilizers for polyethylene nanocomposites. Comp Pt B-Eng 43:497–502

    Article  Google Scholar 

  24. Lujan-Acosta R, Sanchez-Valdes S, Ramírez-Vargas E, Ramos-DeValle LF, Espinoza-Martinez AB, Rodriguez-Fernandez OS, Lozano-Ramirez T, Lafleur PG (2014) Effect of Amino alcohol functionalized polyethylene as compatibilizer for LDPE/EVA/clay/flame-retardant nanocomposites. Mater Chem Phys 146:437–445

    Article  Google Scholar 

  25. Lopez-Quintanilla ML, Sanchez-Valdes S, Ramos de Valle LF, Medellin-Rodriguez FJ (2006) Effect of some compatibilizing agents on clay dispersion of polypropylene-clay nanocomposites. J Appl Polym Sci 100:4748–4756

    Article  Google Scholar 

  26. Nihat AI, Muratahan A, Cevdet K (2010) Nanoclay assisted strengthening of the fiber/matrix interface in functionally filled polyamide 6 composite. Compos Struct 92:2181–2186

    Article  Google Scholar 

  27. Zhu HG, Liu MY, Yuen RK, Leung CK, Kim JK (2014) Thermal performance and flame retardancy studies of vinyl ester and glass fiber reinforced plastic composites containing nanoclay. J Compos Mater 48:165–177

    Article  Google Scholar 

  28. Borrego LP, Costa JDM, Ferreira JAM, Silva H (2014) Fatigue behaviour of glass fibre reinforced epoxy composites enhanced with nanoparticles. Comp Pt B-Eng 62:65–72

    Article  Google Scholar 

  29. Dolati S, Fereidoon A, Sabet AR (2014) Hail impact damage behaviors of glass fiber reinforced epoxy filled with nanoclay. J Compos Mater 48:1241–1249

    Article  Google Scholar 

  30. Ryu JB, Lyu MY (2014) A Study on the Mechanical Property and 3D Fiber Distribution in Injection Molded Glass Fiber Reinforced PA66. Int Polym Process 29:389–401

    Article  Google Scholar 

  31. Mirzadeh A, Ghasemi H, Bates PJ, Kamal MR (2014) The Effect of Molecular Parameters on the Thermal Behavior of Recycled and Virgin Polyamides and Their Glass Fiber Composites. Int Polym Process 29:4–12

    Article  Google Scholar 

  32. Sanchez-Valdes S, Mendez-Nonell J, Medellin-Rodriguez FJ, Ramirez-Vargas E, Martinez-Colunga JG, Ramos de Valle LF, Mondragon-Chaparro M, Lopez-Quintanilla ML, García-Salazar ML (2010) Evaluation of different amine functionalized polyethylenes as compatibilizers for polyethylene film nanocomposites. Polym Int 59:704–711

    Google Scholar 

  33. Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry; American Society for Testing and Materials ASTM D3418

  34. Wunderlich B (1978) Equilibrium melting of flexible linear macromolecules. Polym Eng Sci 18:431–436

    Article  Google Scholar 

  35. LATI High Performance Thermoplastics, Industria Termoplastici S.p.A., Dimensional Molding Shrinkage of Thermoplastic Parts (2007) http://www.lati.com

  36. Revilla-Díaz R, Sanchez-Valdes S, Lopez-Fernandez F, Medellin-Rodriguez FJ, Lopez Quintanilla ML (2007) Comparative characteristics of PP nano and micro composites by in mold shrinkage measurements and structural characteristics. Macromol Mater Eng 292:762–768

    Article  Google Scholar 

  37. Xu YJ, Yang W, Xie BH, Liu ZY, Yang MB (2009) Effect of Injection Parameters and Addition of Nanoscale Materials on the Shrinkage of Polypropylene Copolymer. J of Macromol Scie Pt B-Physics 48:573–586

    Article  Google Scholar 

  38. Pogodina NV, Cerclé C, Avérous L, Thomann R, Bouquey M, Muller R (2008) Processing and characterization of biodegradable polymer nanocomposites: detection of dispersion state. Rheol Acta 47:543–553

    Article  Google Scholar 

  39. Sanchez-Valdes S, Mendez-Nonell J, Ramos de Valle LF, Lozano-Ramírez T, Ramírez-Vargas E, López-Quintanilla ML, Gutiérrez-Rodríguez JM (2009) Effect of different amine modified clays on the compatibility and clay dispersion of polypropylene nanocomposites. e-Polymers 9:1499–1514

  40. Huang YP, Chen GM, Yao Z, Li HW, Wu Y (2005) Non-isothermal crystallization behavior of polypropylene with nucleating agents and nano-calcium carbonate. Eur Polym J 41:2753–2760

    Article  Google Scholar 

  41. Dondero WE, Gorga RE (2006) Morphological and mechanical properties of carbon nanotube/polymer composites via melt compounding. J. Polym. Sci. Pt B-Polym Phys 44:864–868

    Article  Google Scholar 

  42. Chen MJ, Tian GH, Zhang Y, Wan CY, Zhang YX (2006) Effect of silicon dioxide on crystallization and melting behavior of polypropylene. J Appl Polym Sci 100:1889–1898

    Article  Google Scholar 

  43. Bailly M, Kontopoulou M (2009) Preparation and characterization of thermoplastic olefin/nanosilica composite using a silane-grafted polypropylene matrix. Polymer 50:2472–2480

    Article  Google Scholar 

  44. Shrif-Pakdaman A, Morshedian J, Jahani Y (2012) Influence of the silane grafting of polypropylene on the morphology, barrier and rheological properties of high-density polyethylene/organoclay nanocomposites. J Appl Polym Sci 125:E305–E313

    Article  Google Scholar 

  45. Banerjee S, Joshi M, Ghosh AK (2010) A spectroscopic approach for structural characterization of polypropylene/clay nanocomposite. Polym Compos 31:2007–2016

    Article  Google Scholar 

  46. Rodríguez-Llamazares S, Rivas BL, Pérez M, Perrin-Sarazin F (2012) Poly(ethylene glycol) as a compatibilizer and plasticizer of poly(lactic acid)/clay nanocomposites. High Perf Polym 24:254–261

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank CONACYT for the financial support through projects, CB-104865, CB-222805, and LN-232753. The authors also wish to thank Alejandro–Espinoza, Marcelina-Sanchez, Jesus-Rodriguez, Fabian-Chavez, Francisco-Zendejo, M.Lourdes-Guillen, J.Lopez-Rivera, Silvia-Torres, Sergio-Zertuche, H. Felipe-Jimenez, Miriam-Lozano, Josefina-Zamora, Rosario Rangel, Irma Solis, M. E. Hurtado and Daniel Alvarado for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Isaura Yañez-Flores or Saul Sanchez-Valdes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cadena-Perez, A.M., Yañez-Flores, I., Sanchez-Valdes, S. et al. Shrinkage reduction and morphological characterization of PP reinforced with glass fiber and nanoclay using functionalized PP as compatibilizer. Int J Mater Form 10, 233–240 (2017). https://doi.org/10.1007/s12289-015-1272-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-015-1272-5

Keywords

Navigation