Skip to main content
Log in

Processing and characterization of biodegradable polymer nanocomposites: detection of dispersion state

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Nanobiocomposites of poly(lactic acid) (PLA) with 3–5 wt% organically modified montmorillonite (OMMT) were prepared by melt compounding in two different mixers, miniature twin-screw extruder and internal batch mixer, leading to different degrees of dispersion. The progress of dispersion was characterized by melt rheology coupled with light attenuation. Processed PLA/OMMT samples showed percolating networks in the melt, detected by a step increase in low-frequency elastic moduli. The melt elasticity of nanocomposites increased, while the light attenuation coefficient and the loss tangent decreased progressively with mixing energy and reached saturation that can be attributed to the maximum level of clay dispersion achieved in the present experimental conditions. Results showed that a combination of low-frequency loss tangent and light attenuation coefficient provides a potentially sensitive method for the characterization of the degree of clay dispersion. The direct correlation between light attenuation coefficient and loss tangent follows linear dependence and may open an approach for the rapid inline analysis of the degree of dispersion in melt-processed nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bousmina M (2006) Study of intercalation and exfoliation process in polymer nanocomposites. Macromolecules 39:4259–4264

    Article  CAS  Google Scholar 

  • Bousmina M, Ait-Kadi A, Faisant JB (1999) Determination of shear rate and viscosity from batch mixer data. J Rheol 43(2):415–433

    Article  CAS  Google Scholar 

  • Dennis HR, Hunter DL, Chang D, Kim S, White JL, Cho JW, Paul D (2001) Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites. Polymer 42:9513–9522

    Article  CAS  Google Scholar 

  • Fornes TD, Yoon PJ, Keskkula H, Paul DR (2001) Nylon 6 nanocomposites: the effect of matrix molecular weight. Polymer 42:9929–9940

    Article  CAS  Google Scholar 

  • Fritsch J, Stille W, Strobl G (2006) Investigation of polymer crystallization kinetics with time dependentnlight attenuation measurements. Colloid Polym Sci 284:620–626

    Article  CAS  Google Scholar 

  • Heck B, Kawai T, Strobl G (2006) Time dependent light attenuation measurements used in studies of the kinetics of polymer crystallization. Polymer 47:5538–5543

    Article  CAS  Google Scholar 

  • Kadar F, Szazdi L, Fekete E, Pukanszky B (2006) Surface characterization of layered silicates: influence on the property of clay/polymer nanocomposites. Langmuir 22:7848–7854

    Article  CAS  Google Scholar 

  • Kerker M (1969) The scattering of light. Academic Press, New York

    Google Scholar 

  • Maric C, Macosko CW (2001) Improving polymer blend dispersion in mini-mixers. Polym Eng Sci 41:118–130

    Article  CAS  Google Scholar 

  • Martin O, Avérous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219

    Article  CAS  Google Scholar 

  • Meincke O, Kaempfer D, Weickmann H, Friedrich CH, Vathauer M, Warth H (2004) Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 45:739–748

    Article  CAS  Google Scholar 

  • Pinnovaia TJ, Beall GW (eds) (2001) Polymer–clay nanocomposites. Wiley, New York

  • Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  • Szazdi L, Abranyi A, Pukanszky Jr B, Vancso JG, Pukanszky B (2006) Morphology characterization of PP/clay nanocomposites across the length scales of structural architecture. Macromol Mater Eng 291:858–868

    Article  CAS  Google Scholar 

  • Tanoue S, Utracki LA, Garcia-Rajon A, Tatibouet J, Cole KC, Kamal MR (2004) Melt compounding of different grades of polystyrene with organocaly. Polym Eng Sci 44:1046–1060

    Article  CAS  Google Scholar 

  • Utracki LA (2004) Clay-containing polymeric nanocomposites, vols 1 and 2. RAPRA Technology, Shawbury, England

    Google Scholar 

  • Wagener R, Reisinger TJ (2003) A rheological method to compare the degree of exfoliation of nanocomposites. Polymer 44:7513–7518

    Article  CAS  Google Scholar 

  • Winter HH, Mours M (1997) Rheology of polymers near liquid–solid transition. Adv Polym Sci 134:165–248

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful for the financial support from the National Agency for Research grant (ANR-05-BLAN-0256-01-France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Muller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pogodina, N.V., Cerclé, C., Avérous, L. et al. Processing and characterization of biodegradable polymer nanocomposites: detection of dispersion state. Rheol Acta 47, 543–553 (2008). https://doi.org/10.1007/s00397-007-0243-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-007-0243-2

Keywords

Navigation