Skip to main content
Log in

Is There a Relationship Between CXCR4 Gene Expression and Prognosis of Immune Thrombocytopenia in Children?

  • Original Article
  • Published:
Indian Journal of Hematology and Blood Transfusion Aims and scope Submit manuscript

Abstract

Immune thrombocytopenia (ITP) is a common autoimmune disorder characterized by decreased platelet count (thrombocytopenia) and bleeding symptoms due to production of autoantibodies against platelets. Chemokines are molecules inducing chemotaxis and play an important role in megakaryopoiesis, including CXCR4 chemokine receptor. CXCR4 is expressed on cells of megakaryocytic series, especially platelets, and triggers several mechanisms in these cells. The purpose of this study was to evaluate the pattern of CXCR4 gene changes upon diagnosis and after treatment and its comparison with laboratory findings in peripheral blood samples from newly diagnosed ITP patients. 35 newly diagnosed patients with ITP and 35 healthy controls were enrolled in this study. CXCR4 gene expression was investigated before and after treatment using real-time PCR. HPRT gene was used as the reference gene to calculate the expression rate of CXCR4 as CXCR4/HPRT ratio. CXCR4 gene expression upon diagnosis and after treatment in peripheral blood plasma of ITP patients showed a significant decrease in comparison with the control group while its expression did not change before and after treatment. No significant correlation was found between the expression of this gene and laboratory parameters. Due to unpredictable course of ITP in patients and the possibility of its progress to refractory form, accurate choice of a biomarker is essential for evaluating prognosis and detection of resistant forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Stasi R, Newland AC (2011) ITP: a historical perspective. Br J Haematol 153(4):437–450

    Article  PubMed  Google Scholar 

  2. Saeidi S, Jaseb K, Asnafi AA, Rahim F, Pourmotahari F, Mardaniyan S et al (2014) Immune thrombocytopenic purpura in children and adults: a comparative retrospective study in Iran. Int J Hematol Oncol Stem Cell Res 8(3):30–36

    PubMed  PubMed Central  Google Scholar 

  3. Gu D, Chen Z, Zhao H, Du W, Xue F, Ge J et al (2010) Th1 (CXCL10) and Th2 (CCL2) chemokine expression in patients with immune thrombocytopenia. Hum Immunol 71(6):586–591

    Article  CAS  PubMed  Google Scholar 

  4. Ku FC, Tsai CR, Wang J, Wang CH, Chang TK, Hwang WL (2013) Stromal-derived factor-1 gene variations in pediatric patients with primary immune thrombocytopenia. Eur J Haematol 90(1):25–30

    Article  CAS  PubMed  Google Scholar 

  5. Wang JF, Liu ZY, Groopman JE (1998) The alpha-chemokine receptor CXCR4 is expressed on the megakaryocytic lineage from progenitor to platelets and modulates migration and adhesion. Blood 92(3):756–764

    CAS  PubMed  Google Scholar 

  6. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622

    Article  CAS  PubMed  Google Scholar 

  7. George JN, Woolf SH, Raskob GE, Wasser J, Aledort L, Ballem P et al (1996) Idiopathic thrombocytopenic purpura: a practice guideline developed by explicit methods for the American Society of Hematology. Blood 88(1):3–40

    CAS  PubMed  Google Scholar 

  8. Anoop P (2012) Immune thrombocytopenic purpura: historical perspective, current status, recent advances and future directions. Indian Pediatr 49(10):811–818

    Article  CAS  PubMed  Google Scholar 

  9. Johnsen J (2012) Pathogenesis in immune thrombocytopenia: new insights. ASH Educ Program Book 2012(1):306–312

    Google Scholar 

  10. Zhou B, Zhao H, Yang RC, Han ZC (2005) Multi-dysfunctional pathophysiology in ITP. Crit Rev Oncol Hematol 54(2):107–116

    Article  PubMed  Google Scholar 

  11. Wendling F, Han Z-C (1997) 2 Positive and negative regulation of megakaryocytopoiesis. Baillières Clin Haematol 10(1):29–45

    Article  CAS  PubMed  Google Scholar 

  12. Machlus KR, Thon JN, Italiano JE (2014) Interpreting the developmental dance of the megakaryocyte: a review of the cellular and molecular processes mediating platelet formation. Br J Haematol 165(2):227–236

    Article  PubMed  Google Scholar 

  13. Deutsch VR, Tomer A (2006) Megakaryocyte development and platelet production. Br J Haematol 134(5):453–466

    Article  CAS  PubMed  Google Scholar 

  14. Abi-Younes S, Sauty A, Mach F, Sukhova G, Libby P, Luster A (2000) The stromal cell–derived factor-1 chemokine is a potent platelet agonist highly expressed in atherosclerotic plaques. Circ Res 86(2):131–138

    Article  CAS  PubMed  Google Scholar 

  15. Deutsch V, Bitan M, Friedmann Y, Eldor A, Vlodavsky I (2000) Megakaryocyte maturation is associated with expression of the CXC chemokine connective tissue-activating peptide CTAP III. Br J Haematol 111(4):1180–1189

    Article  CAS  PubMed  Google Scholar 

  16. Gear AR, Camerini D (2003) Platelet chemokines and chemokine receptors: linking hemostasis, inflammation, and host defense. Microcirculation 10(3–4):335–350

    Article  CAS  PubMed  Google Scholar 

  17. Hodohara K, Fujii N, Yamamoto N, Kaushansky K (2000) Stromal cell-derived factor-1 (SDF-1) acts together with thrombopoietin to enhance the development of megakaryocytic progenitor cells (CFU-MK). Blood 95(3):769–775

    CAS  PubMed  Google Scholar 

  18. Rivière C, Subra F, Cohen-Solal K, Cordette-Lagarde V, Letestu R, Auclair C et al (1999) Phenotypic and functional evidence for the expression of CXCR4 receptor during megakaryocytopoiesis. Blood 93(5):1511–1523

    PubMed  Google Scholar 

  19. Labbaye C, Spinello I, Quaranta MT, Pelosi E, Pasquini L, Petrucci E et al (2008) A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis. Nat Cell Biol 10(7):788–801

    Article  CAS  PubMed  Google Scholar 

  20. Scaradavou A (2002) HIV-related thrombocytopenia. Blood Rev 16(1):73–76

    Article  CAS  PubMed  Google Scholar 

  21. Feng X, Scheinberg P, Samsel L, Rios O, Chen J, McCOY J et al (2012) Decreased plasma cytokines are associated with low platelet counts in aplastic anemia and immune thrombocytopenic purpura. J Thromb Haemost 10(8):1616–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang A, Guilpain P, Chong BF, Chouzenoux S, Guillevin L, Du Y et al (2010) Dysregulated expression of CXCR4/CXCL12 in subsets of patients with systemic lupus erythematosus. Arthritis Rheum 62(11):3436–3446

    Article  PubMed  Google Scholar 

  23. Ahn JY, Seo K, Weinberg OK, Arber DA (2013) The prognostic value of CXCR4 in acute myeloid leukemia. Appl Immunohistochem Mol Morphol 21(1):79–84

    CAS  PubMed  Google Scholar 

  24. Salim JP, Goette NP, Lev PR, Chazarreta CD, Heller PG, Alvarez C et al (2009) Dysregulation of stromal derived factor 1/CXCR4 axis in the megakaryocytic lineage in essential thrombocythemia. Br J Haematol 144(1):69–77

    Article  CAS  PubMed  Google Scholar 

  25. Kowalska MA, Ratajczak J, Hoxie J, Brass LF, Gewirtz A, Poncz M et al (1999) Megakaryocyte precursors, megakaryocytes and platelets express the HIV co-receptor CXCR4 on their surface: determination of response to stromal-derived factor-1 by megakaryocytes and platelets. Br J Haematol 104(2):220–229

    Article  CAS  PubMed  Google Scholar 

  26. Wang J-D, Ou T-T, Wang C-J, Chang T-K, Lee H-J (2010) Platelet apoptosis resistance and increased CXCR4 expression in pediatric patients with chronic immune thrombocytopenic purpura. Thromb Res 126(4):311–318

    Article  CAS  PubMed  Google Scholar 

  27. Olsson B, Ridell B, Carlsson L, Jacobsson S, Wadenvik H (2008) Recruitment of T cells into bone marrow of ITP patients possibly due to elevated expression of VLA-4 and CX3CR1. Blood 112(4):1078–1084

    Article  CAS  PubMed  Google Scholar 

  28. Pitchford SC, Lodie T, Rankin SM (2012) VEGFR1 stimulates a CXCR4-dependent translocation of megakaryocytes to the vascular niche, enhancing platelet production in mice. Blood 120(14):2787–2795

    Article  CAS  PubMed  Google Scholar 

  29. Janz JM, Ren Y, Looby R, Kazmi MA, Sachdev P, Grunbeck A et al (2011) Direct interaction between an allosteric agonist pepducin and the chemokine receptor CXCR4. J Am Chem Soc 133(40):15878–15881

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grant TH93/4 from vice chancellor for research affairs of Ahvaz Jundishapur University of Medical Sciences. This paper is issued from thesis of Sajedeh Saeidi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najmaldin Saki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeidi, S., Mohammadi-Asl, J., Far, M.A.J. et al. Is There a Relationship Between CXCR4 Gene Expression and Prognosis of Immune Thrombocytopenia in Children?. Indian J Hematol Blood Transfus 33, 216–221 (2017). https://doi.org/10.1007/s12288-016-0648-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12288-016-0648-0

Keywords

Navigation