Skip to main content
Log in

Ni-doped ZnCo2O4 atomic layers to boost the selectivity in solar-driven reduction of CO2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Regulating the selectivity of CO2 photoreduction is particularly challenging. Herein, we propose ideal models of atomic layers with/without element doping to investigate the effect of doping engineering to tune the selectivity of CO2 photoreduction. Prototypical ZnCo2O4 atomic layers with/without Ni-doping were first synthesized. Density functional theory calculations reveal that introducing Ni atoms creates several new energy levels and increases the density-of-states at the conduction band minimum. Synchrotron radiation photoemission spectroscopy demonstrates that the band structures are suitable for CO2 photoreduction, while the surface photovoltage spectra demonstrate that Ni doping increases the carrier separation efficiency. In situ diffuse reflectance Fourier transform infrared spectra disclose that the CO2·− radical is the main intermediate, while temperature-programed desorption curves reveal that the ZnCo2O4 atomic layers with/without Ni doping favor the respective CO and CH4 desorption. The Ni-doped ZnCo2O4 atomic layers exhibit a 3.5-time higher CO selectivity than the ZnCo2O4 atomic layers. This work establishes a clear correlation between elemental doping and selectivity regulation for CO2 photoreduction, opening new possibilities for tailoring solar-driven photocatalytic behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lei, F. C.; Liu, W.; Sun, Y. F.; Xu, J. Q.; Liu, K. T.; Liang, L.; Yao, T.; Pan, B. C.; Wei, S. Q.; Xie, Y. Metallic tin quantum sheets confined in graphene toward highefficiency carbon dioxide electroreduction. Nat. Commun. 2016, 7, 12697.

    Article  Google Scholar 

  2. Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.

    Article  Google Scholar 

  3. Liang, L.; Lei, F. C.; Gao, S.; Sun, Y. F.; Jiao, X. C.; Wu, J.; Qamar, S.; Xie, Y. Single unit cell bismuth tungstate layers realizing robust solar CO2 reduction to methanol. Angew. Chem., Int. Ed. 2015, 54, 13971–13974.

    Article  Google Scholar 

  4. Xu, J. Q.; Li, X. D.; Liu, W.; Sun, Y. F.; Ju, Z. Y.; Yao, T.; Wang, C. M.; Ju, H. X.; Zhu, J. F.; Wei, S. Q. et al. Carbon dioxide electroreduction into syngas boosted by a partially delocalized charge in molybdenum sulfide selenide alloy monolayers. Angew. Chem., Int. Ed. 2017, 56, 9121–9125.

    Article  Google Scholar 

  5. Qiu, Q. Q.; Li, S.; Jiang, J. J.; Wang, D. J.; Lin, Y. H.; Xie, T. F. Improved electron transfer between TiO2 and FTO interface by N-doped anatase TiO2 nanowires and its applications in quantum dot-sensitized solar cells. J. Phys. Chem. C 2017, 121, 21560–21570.

    Article  Google Scholar 

  6. Qamar, S.; Lei, F. C.; Liang, L.; Gao, S.; Liu, K. T.; Sun, Y. F.; Ni, W. X.; Xie, Y. Ultrathin TiO2 flakes optimizing solar light driven CO2 reduction. Nano Energy 2016, 26, 692–698.

    Article  Google Scholar 

  7. Li, H. Y.; Wang, D. J.; Fan, H. M.; Jiang, T. F.; Li, X. L.; Xie, T. F. Synthesis of ordered multivalent Mn-TiO2 nanospheres with tunable size: A high performance visiblelight photocatalyst. Nano Res. 2011, 4, 460–469.

    Article  Google Scholar 

  8. Jiang, T. F.; Xie, T. F.; Zhang, Y.; Chen, L. P.; Peng, L. L.; Li, H. Y.; Wang, D. J. Photoinduced charge transfer in ZnO/Cu2O heterostructure films studied by surface photovoltage technique. Phys. Chem. Chem. Phys. 2010, 12, 15476–15481.

    Article  Google Scholar 

  9. Fletcher, C.; Jiang, Y. J.; Sun, C. H.; Amal, R. Morphological evolution and electronic alteration of ZnO nanomaterials induced by Ni/Fe co-doping. Nanoscale 2014, 6, 7312–7318.

    Article  Google Scholar 

  10. Ong, W.-J.; Tan, L.-L.; Chai, S.-P.; Yong, S.-T.; Mohamed, A. R. Self-assembly of nitrogen-doped TiO2 with exposed {001} facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane. Nano Res. 2014, 7, 1528–1547.

    Article  Google Scholar 

  11. Mao, J.; Li, K.; Peng, T. Y. Recent advances in the photocatalytic CO2 reduction over semiconductors. Catal. Sci. Technol. 2013, 3, 2481–2498.

    Article  Google Scholar 

  12. Lei, F. C.; Sun, Y. F.; Liu, K. T.; Gao, S.; Liang, L.; Pan, B. C.; Xie, Y. Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc. 2014, 136, 6826–6829.

    Article  Google Scholar 

  13. Liu, Y. W.; Xiao, C.; Li, Z.; Xie, Y. Vacancy engineering for tuning electron and phonon structures of two-dimensional materials. Adv. Energy Mater. 2016, 6, 1600436.

    Article  Google Scholar 

  14. Liu, K. T.; Zhang, W. S.; Lei, F. C.; Liang, L.; Gu, B. C.; Sun, Y. F.; Ye, B. J.; Ni, W. X.; Xie, Y. Nitrogen-doping induced oxygen divacancies in freestanding molybdenum trioxide single-layers boosting electrocatalytic hydrogen evolution. Nano Energy 2016, 30, 810–817.

    Article  Google Scholar 

  15. Sato, S.; Morikawa, T.; Saeki, S.; Kajino, T.; Motohiro, T. Visible-light-induced selective CO2 reduction utilizing a ruthenium complex electrocatalyst linked to a p-type nitrogen-doped Ta2O5 semiconductor. Angew. Chem., Int. Ed. 2010, 49, 5101–5105.

    Article  Google Scholar 

  16. Teramura, K.; Wang, Z.; Hosokawa, S.; Sakata, Y.; Tanaka, T. A doping technique that suppresses undesirable H2 evolution derived from overall water splitting in the highly selective photocatalytic conversion of CO2 in and by water. Chemistry 2014, 20, 9906–9909.

    Article  Google Scholar 

  17. Wang, S.; Ding, Z. X.; Wang, X. C. A stable ZnCo2O4 cocatalyst for photocatalytic CO2 reduction. Chem. Commun. 2015, 51, 1517–1519.

    Article  Google Scholar 

  18. Zhu, Y. Q.; Cao, C. B.; Zhang, J. T.; Xu, X. Y. Twodimensional ultrathin ZnCo2O4 nanosheets: General formation and lithium storage application. J. Mater. Chem. A 2015, 3, 9556–9564.

    Article  Google Scholar 

  19. Surendranath Y.; Kanan M. W.; Nocera D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 2010, 132, 16501–16509.

    Article  Google Scholar 

  20. Perdew J. P.; Burke K.; Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  21. Shek, C. H.; Lai, J. K. L.; Lin, G. M. Investigation of interface defects in nanocrystalline SnO2 by positron annihilation. J. Phys. Chem. Solids 1999, 60, 189–193.

    Article  Google Scholar 

  22. Jiao, X. C.; Chen, Z. W.; Li, X. D.; Sun, Y. F.; Gao, S.; Yan, W. S.; Wang, C. M.; Zhang, Q.; Lin, Y.; Luo, Y. et al. Defect-mediated electron–hole separation in one-unit-cell ZnIn2S4 layers for boosted solar-driven CO2 reduction. J. Am. Chem. Soc. 2017, 139, 7586–7594.

    Article  Google Scholar 

  23. Iizuka, K.; Wato, T.; Miseki, Y.; Saito, K.; Kudo, A. Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded AlA4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. J. Am. Chem. Soc. 2011, 133, 20863–20868.

    Article  Google Scholar 

  24. Lei, F. C.; Zhang, L.; Sun, Y. F.; Liang, L.; Liu, K. T.; Xu, J. Q.; Zhang, Q.; Pan, B. C.; Luo, Y.; Xie, Y. Atomiclayer- confined doping for atomic-level insights into visiblelight water splitting. Angew. Chem., Int. Ed. 2015, 54, 9266–9270.

    Article  Google Scholar 

  25. Balti, I.; Mezni, A.; Dakhlaoui-Omrani, A.; Léone, P.; Viana, B.; Brinza, O.; Smiri, L.-S.; Jouini, N. Comparative study of Ni- and Co-substituted ZnO nanoparticles: Synthesis, optical, and magnetic properties. J. Phys. Chem. C 2011, 115, 15758–15766.

    Article  Google Scholar 

  26. Liu, Y. M.; Chen, S.; Quan, X.; Yu, H. T. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J. Am. Chem. Soc. 2015, 137, 11631–11636.

    Article  Google Scholar 

  27. Neaţu, Ş.; Maciá-Agulló, J. A.; Concepción, P.; Garcia, H. Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. J. Am. Chem. Soc. 2014, 136, 15969–15976.

    Article  Google Scholar 

  28. Grabow, L. C.; Mavrikakis, M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal. 2011, 1, 365–384.

    Article  Google Scholar 

  29. Wilcox, E. M.; Roberts, G. W.; Spivey, J. J. Direct catalytic formation of acetic acid from CO2 and methane. Catal. Today 2003, 88, 83–90.

    Article  Google Scholar 

  30. Cao, Y.; Li, H. R.; Zhang, J. P.; Shi, L. Y.; Zhang, D. S. Promotional effects of rare earth elements (Sc, Y, Ce, and Pr) on nimgal catalysts for dry reforming of methane. RSC Adv. 2016, 6, 112215–112225.

    Article  Google Scholar 

  31. Wang, W.; Gong, J. L. Methanation of carbon dioxide: An overview. Front. Chem. Sci. Eng. 2011, 5, 2–10.

    Article  Google Scholar 

  32. Zhang, L.; Zhao, Z. J.; Gong, J. L. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem., Int. Ed. 2017, 56, 11326–11353.

    Article  Google Scholar 

  33. Zhang, L.; Wang, W. Z.; Jiang, D.; Gao, E. P.; Sun, S. M. Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies. Nano Res. 2015, 8, 821–831.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Nos. 2017YFA0303500 and 2017YFA0207301), the National Natural Science Foundation of China (Nos. 21422107, U1632147, 21331005, U1532265, and 11621063), Youth Innovation Promotion Association of CAS (No. CX2340000100), Key Research Program of Frontier Sciences of CAS (No. QYZDY-SSW-SLH011), the Fundamental Research Funds for the Central Universities (Nos. WK2340000063 and WK2340000073) and Scientific Research Grant of Hefei Science Center of CAS (No. 2016HSC-IU002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongfu Sun or Yi Xie.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Li, X., Liang, L. et al. Ni-doped ZnCo2O4 atomic layers to boost the selectivity in solar-driven reduction of CO2. Nano Res. 11, 2897–2908 (2018). https://doi.org/10.1007/s12274-017-1943-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1943-2

Keywords

Navigation