Skip to main content
Log in

Methanation of carbon dioxide: an overview

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Although being very challenging, utilization of carbon dioxide (CO2) originating from production processes and flue gases of CO2-intensive sectors has a great environmental and industrial potential due to improving the resource efficiency of industry as well as by contributing to the reduction of CO2 emissions. As a renewable and environmentally friendly source of carbon, catalytic approaches for CO2 fixation in the synthesis of chemicals offer the way to mitigate the increasing CO2 buildup. Among the catalytic reactions, methanation of CO2 is a particularly promising technique for producing energy carrier or chemical. This article focuses on recent developments in catalytic materials, novel reactors, and reaction mechanism for methanation of CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dell’Amico D B, Calderazzo F, Labella L, Marchetti F, Pampaloni G. Converting carbon dioxide into carbamato derivatives. Chemical Reviews, 2003, 103(10): 3857–3898

    Article  Google Scholar 

  2. Mikkelsen M, Jorgensen M, Krebs F C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci, 2010, 3(1): 43–81

    Article  CAS  Google Scholar 

  3. Riduan S N, Zhang Y G. Recent developments in carbon dioxide utilization under mild conditions. Dalton Trans (Cambridge, England), 2010, 39(14): 3347–3357

    CAS  Google Scholar 

  4. Arakawa H, Aresta M, Armor J N, Barteau M A, Beckman E J, Bell A T, Bercaw J E, Creutz C, Dinjus E, Dixon D A, Domen K, DuBois D L, Eckert J, Fujita E, Gibson D H, Goddard W A, Goodman D W, Keller J, Kubas G J, Kung H H, Lyons J E, Manzer L E, Marks T J, Morokuma K, Nicholas K M, Periana R, Que L, Rostrup-Nielson J, Sachtler W M H, Schmidt L D, Sen A, Somorjai G A, Stair P C, Stults B R, Tumas W. Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chemical Reviews, 2001, 101(4): 953–996

    Article  CAS  Google Scholar 

  5. Jessop P G, Joo F, Tai C C. Recent advances in the homogeneous hydrogenation of carbon dioxide. Coordination Chemistry Reviews, 2004, 248(21–24): 2425–2442

    Article  CAS  Google Scholar 

  6. Omae I. Aspects of carbon dioxide utilization. Catalysis Today, 2006, 115(1–4): 33–52

    Article  CAS  Google Scholar 

  7. Sakakura T, Choi J C, Yasuda H. Transformation of carbon dioxide. Chemical Reviews, 2007, 107(6): 2365–2387

    Article  CAS  Google Scholar 

  8. Aresta M, Dibenedetto A. Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans (Cambridge, England), 2007, (28): 2975–2992

    Google Scholar 

  9. Sakakura T, Kohno K. The synthesis of organic carbonates from carbon dioxide. Chem Commun (Cambridge), 2009, (11): 1312–1330

    Article  Google Scholar 

  10. Centi G, Perathoner S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catalysis Today, 2009, 148(3–4): 191–205

    Article  CAS  Google Scholar 

  11. Lunde P J, Kester F L. Carbon dioxide methanation on a ruthenium catalyst. Industrial & Engineering Chemistry Process Design and Development, 1974, 13(1): 27–33

    Article  CAS  Google Scholar 

  12. VanderWiel D P, Zilka-Marco J L, Wang Y, Tonkovich A Y, Wegeng R S. In: Spring National Meeting. Atlanta: AIChe, 2000

    Google Scholar 

  13. Chang FW, Kuo MS, Tsay MT, Hsieh MC. Hydrogenation of CO2 over nickel catalysts on rice husk ash-alumina prepared by incipient wetness impregnation. Applied Catalysis A: General, 2003, 247(2): 309–320

    Article  CAS  Google Scholar 

  14. Du G A, Lim S, Yang Y H, Wang C, Pfefferle L, Haller G L. Methanation of carbon dioxide on Ni-incorporated MCM-41 catalysts: The influence of catalyst pretreatment and study of steady-state reaction. Journal of Catalysis, 2007, 249(2): 370–379

    Article  CAS  Google Scholar 

  15. Weatherbee G D, Bartholomew C H. Hydrogenation of CO2 on group VIII metals: I. Specific activity of Ni/SiO2. Journal of Catalysis, 1981, 68(1): 67–76

    Article  CAS  Google Scholar 

  16. Peebles D E, Goodman D W, White J M. Methanation of carbon dioxide on nickel (100) and the effects of surface modifiers. Journal of Physical Chemistry, 1983, 87(22): 4378–4387

    Article  CAS  Google Scholar 

  17. Vance C K, Bartholomew C H. Hydrogenation of carbon dioxide on group viii metals: III, Effects of support on activity/selectivity and adsorption properties of nickel. Applied Catalysis, 1983, 7(2): 169–177

    Article  CAS  Google Scholar 

  18. Chang F W, Hsiao T J, Chung SW, Lo J J. Nickel supported on rice husk ash—activity and selectivity in CO2 methanation. Applied Catalysis A: General, 1997, 164(1–2): 225–236

    Article  CAS  Google Scholar 

  19. Chang F W, Hsiao T J, Shih J D. Hydrogenation of CO2 over a rice husk ash supported nickel catalyst prepared by deposition-precipitation. Industrial & Engineering Chemistry Research, 1998, 37(10): 3838–3845

    Article  CAS  Google Scholar 

  20. Chang F W, Tsay M T, Liang S P. Hydrogenation of CO2 over nickel catalysts supported on rice husk ash prepared by ion exchange. Applied Catalysis A: General, 2001, 209(1–2): 217–227

    Article  CAS  Google Scholar 

  21. Chang F W, Tsay M T, Kuo M S. Effect of thermal treatments on catalyst reducibility and activity in nickel supported on RHA-Al2O3 systems. Thermochimica Acta, 2002, 386(2): 161–172

    Article  CAS  Google Scholar 

  22. Puxley D C, Kitchener I J, Komodromos C, Perkyns N D. In preparation of catalysts. Amsterdam: Elsevier, 1983, 237

    Google Scholar 

  23. Sane S, Bonnier JM, Damon J P, Masson J. Raney metal catalysts: I. comparative properties of raney nickel proceeding from Ni-Al intermetallic phases. Applied Catalysis, 1984, 9(1): 69–83

    Article  CAS  Google Scholar 

  24. Lee G D, Moon M J, Park J H, Park S S, Hong S S. Raney Ni catalysts derived from different alloy precursors Part II. CO and CO2 methanation activity. Korean J Chem Eng, 2005, 22(4): 541–546

    Article  CAS  Google Scholar 

  25. Sehested J, Larsen K E, Kustov A L, Frey A M, Johannessen T, Bligaard T, Andersson M P, Norskov J K, Christensen C H. Discovery of technical methanation catalysts based on computational screening. Topics in Catalysis, 2007, 45(1–4): 9–13

    Article  CAS  Google Scholar 

  26. Yamasaki M, Habazaki H, Asami K, Izumiya K, Hashimoto K. Effect of tetragonal ZrO2 on the catalytic activity of Ni/ZrO2 catalyst prepared from amorphous Ni-Zr alloys. Catalysis Communications, 2006, 7(1): 24–28

    Article  CAS  Google Scholar 

  27. Kaspar J, Fornasiero P, Graziani M. Use of CeO2-based oxides in the three-way catalysis. Catalysis Today, 1999, 50(2): 285–298

    Article  CAS  Google Scholar 

  28. Tsolakis A, Golunski S E. Sensitivity of process efficiency to reaction routes in exhaust-gas reforming of diesel fuel. Chemical Engineering Journal, 2006, 117(2): 131–136

    Article  CAS  Google Scholar 

  29. Perkas N, Amirian G, Zhong Z Y, Teo J, Gofer Y, Gedanken A. Methanation of carbon dioxide on Ni catalysts on mesoporous ZrO2 doped with rare earth oxides. Catalysis Letters, 2009, 130(3–4): 455–462

    Article  CAS  Google Scholar 

  30. Ocampo F, Louis B, Roger A C. Methanation of carbon dioxide over nickel-based Ce0.72Zr0.28O2 mixed oxide catalysts prepared by sol-gel method. Applied Catalysis A: General, 2009, 369(1–2): 90–96

    Article  CAS  Google Scholar 

  31. Song H L, Yang J, Zhao J, Chou L J. Methanation of carbon dioxide over a highly dispersed Ni/La2O3 catalyst. Chinese Journal of Catalysis, 2010, 31(1): 21–23

    Article  CAS  Google Scholar 

  32. Guo F, Chu W, Xu H Y, Zhang T. Glow discharge plasma-enhanced preparation of nickel-based catalyst for CO2 methanation. Chinese Journal of Catalysis, 2007, 28: 429–434

    CAS  Google Scholar 

  33. Kustov A L, Frey A M, Larsen K E, Johannessen T, Norskov J K, Christensen C H. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization. Applied Catalysis A: General, 2007, 320: 98–104

    Article  CAS  Google Scholar 

  34. Agnelli M, Kolb M, Mirodatos C. CO hydrogenation on a nickel catalyst: 1. Kinetics and modeling of a low-temperature sintering process. Journal of Catalysis, 1994, 148(1): 9–21

    Article  CAS  Google Scholar 

  35. Kuśmierz M. Kinetic study on carbon dioxide hydrogenation over Ru/gamma-Al2O3 catalysts. Catalysis Today, 2008, 137(2–4): 429–432

    Article  Google Scholar 

  36. Abe T, Tanizawa M, Watanabe K, Taguchi A. CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method. Energy Environ Sci, 2009, 2(3): 315–321

    Article  CAS  Google Scholar 

  37. Kowalczyk Z, Stolecki K, Rarńg-Pilecka W, Miśkiewicz E, Wilczkowska E, Karpińiski Z. Supported ruthenium catalysts for selective methanation of carbon oxides at very low COx/H2 ratios. Applied Catalysis A: General, 2008, 342(1–2): 35–39

    Article  CAS  Google Scholar 

  38. Luo L, Li S, Zhu Y. The effects of yttrium on the hydrogenation performance and surface properties of a ruthenium-supported catalyst. J Serb Chem Soc, 2005, 70(12): 1419–1425

    Article  CAS  Google Scholar 

  39. Yu K P, Yu W Y, Kuo M C, Liou Y C, Chien S H. Pt/titaniananotube: A potential catalyst for CO2 adsorption and hydrogenation. Applied Catalysis B: Environmental, 2008, 84(1–2): 112–118

    Article  CAS  Google Scholar 

  40. Chen Y G, Tomishige K, Yokoyama K, Fujimoto K. Promoting effect of Pt, Pd and Rh noble metals to the Ni0.03Mg0.97O solid solution catalysts for the reforming of CH4 with CO2. Applied Catalysis A: General, 1997, 165(1–2): 335–347

    Article  CAS  Google Scholar 

  41. Borodziński A, Bond G C. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part I. Effect of changes to the catalyst during reaction. Catalysis Reviews. Science and Engineering, 2006, 48(2): 91–144

    Google Scholar 

  42. Albers P, Pietsch J, Parker S F. Poisoning and deactivation of palladium catalysts. J Mol Catal A, 2001, 173(1–2): 275–286

    CAS  Google Scholar 

  43. Schuurman Y, Mirodatos C, Ferreira-Aparicio P, Rodríguez-Ramos I, Guerrero-Ruiz A. Bifunctional pathways in the carbon dioxide reforming of methane over MgO-promoted Ru/C catalysts. Catalysis Letters, 2000, 66(1/2): 33–37

    Article  CAS  Google Scholar 

  44. Galuszka J. Carbon dioxide chemistry during oxidative coupling of methane on a Li/MgO catalyst. Catalysis Today, 1994, 21(2–3): 321–331

    Article  CAS  Google Scholar 

  45. Park J N, McFarland E W. A highly dispersed Pd-Mg/SiO2 catalyst active for methanation of CO2. Journal of Catalysis, 2009, 266(1): 92–97

    Article  CAS  Google Scholar 

  46. Szailer T, Novak E, Oszko A, Erdohelyi A. Effect of H2S on the hydrogenation of carbon dioxide over supported Rh catalysts. Topics in Catalysis, 2007, 46(1–2): 79–86

    Article  CAS  Google Scholar 

  47. Vayenas C G, Bebelis S, Ladas S. Dependence of catalytic rates on catalyst work function. Nature, 1990, 343(6259): 625–627

    Article  CAS  Google Scholar 

  48. Lintz H G, Vayenas C G. Solid ion conductors in heterogeneous catalysis. Angewandte Chemie International Edition in English, 1989, 28(6): 708–715

    Article  Google Scholar 

  49. Vayenas C G, Bebelis S, Neophytides S, Yentekakis I V. Nonfaradaic electrochemical modification of catalytic activity in solid electrolyte cells. Applied Physics A, Materials Science & Processing, 1989, 49(1): 95–103

    Article  Google Scholar 

  50. Vayenas C G, Koutsodontis C G. Non-Faradaic electrochemical activation of catalysis. The Journal of Chemical Physics, 2008, 128(18): 182506–182518

    Article  Google Scholar 

  51. Bebelis S, Karasali H, Vayenas C G. Electrochemical promotion of CO2 hydrogenation on Rh/YSZ electrodes. Journal of Applied Electrochemistry, 2008, 38(8): 1127–1133

    Article  CAS  Google Scholar 

  52. Papaioannou E I, Souentie S, Hammad A, Vayenas C G. Electrochemical promotion of the CO2 hydrogenation reaction using thin Rh, Pt and Cu films in a monolithic reactor at atmospheric pressure. Catalysis Today, 2009, 146(3–4): 336–344

    Article  CAS  Google Scholar 

  53. Krämer M, Stowe K, Duisberg M, Muller F, Reiser M, Sticher S, Maier WF. The impact of dopants on the activity and selectivity of a Ni-based methanation catalyst. Applied Catalysis A: General, 2009, 369(1–2): 42–52

    Article  Google Scholar 

  54. Falconer J L, Zagli A E. Adsorption and methanation of carbon dioxide on a nickel/silica catalyst. Journal of Catalysis, 1980, 62(2): 280–285

    Article  CAS  Google Scholar 

  55. Weatherbee G D, Bartholomew C H. Hydrogenation of CO2 on group VIII metals: II. Kinetics and mechanism of CO2 hydrogenation on nickel. Journal of Catalysis, 1982, 77(2): 460–472

    Article  CAS  Google Scholar 

  56. Marwood M, Doepper R, Renken A. In-situ surface and gas phase analysis for kinetic studies under transient conditions: The catalytic hydrogenation of CO2. Applied Catalysis A: General, 1997, 151(1): 223–246

    Article  CAS  Google Scholar 

  57. Fujita S, Terunuma H, Kobayashi H, Takezawa N. Methanation of carbon monoxide and carbon dioxide over nickel catalyst under the transient state. React Kinet Catal Lett, 1987, 33(1): 179–184

    Article  CAS  Google Scholar 

  58. Schild C, Wokaun A, Baiker A. On the mechanism of CO and CO2 hydrogenation reactions on zirconia-supported catalysts: a diffuse reflectance FTIR study: Part II. Surface species on copper/zirconia catalysts: implications for methanoi synthesis selectivity. Journal of Molecular Catalysis, 1990, 63(2): 243–254

    Article  CAS  Google Scholar 

  59. Vannice M A. The catalytic synthesis of hydrocarbons from H2/CO mixtures over the group VIII metals: IV. The kinetic behavior of CO hydrogenation over Ni catalysts. Journal of Catalysis, 1976, 44(1): 152–162

    Article  CAS  Google Scholar 

  60. Huang C P, Richardson J T. Alkali promotion of nickel catalysts for carbon monoxide methanation. Journal of Catalysis, 1978, 51(1): 1–8

    Article  CAS  Google Scholar 

  61. Araki M, Ponec V. Methanation of carbon monoxide on nickel and nickel-copper alloys. Journal of Catalysis, 1976, 44(3): 439–448

    Article  CAS  Google Scholar 

  62. Sehested J, Dahl S, Jacobsen J, Rostrup-Nielsen J R. Methanation of CO over nickel: Mechanism and kinetics at high H2/CO ratios. The Journal of Physical Chemistry B, 2005, 109(6): 2432–2438

    Article  CAS  Google Scholar 

  63. Lapidus A L, Gaidai N A, Nekrasov N V, Tishkova L A, Agafonov Y A, Myshenkova T N. The mechanism of carbon dioxide hydrogenation on copper and nickel catalysts. Petroleum Chemistry, 2007, 47(2): 75–82

    Article  Google Scholar 

  64. Watwe R M, Bengaard H S, Rostrup-Nielsen J R, Dumesic J A, Nørskov J K. Theoretical studies of stability and reactivity of CHx species on Ni(111). Journal of Catalysis, 2000, 189(1): 16–30

    Article  CAS  Google Scholar 

  65. Ackermann M, Robach O, Walker C, Quiros C, Isern H, Ferrer S. Hydrogenation of carbon monoxide on Ni(111) investigated with surface X-ray diffraction at atmospheric pressure. Surface Science, 2004, 557(1–3): 21–30

    Article  CAS  Google Scholar 

  66. Choe S J, Kang H J, Kim S J, Park S B, Park D H, Huh D S. Adsorbed carbon formation and carbon hydrogenation for CO2 methanation on the Ni(111) surface: ASED-MO study. Bulletin of the Korean Chemical Society, 2005, 26(11): 1682–1688

    Article  CAS  Google Scholar 

  67. Kim H Y, Lee H M, Park J N. Bifunctional mechanism of CO2 methanation on Pd-MgO/SiO2 catalyst: independent roles of MgO and Pd on CO2 methanation. Journal of Physical Chemistry C, 2010, 114(15): 7128–7131

    Article  CAS  Google Scholar 

  68. Blangenois N, Jacquemin M, Ruiz P. U S. Patent, WO2010006386, 2010-1-21

  69. Jacquemin M, Beuls A, Ruiz P. Catalytic production of methane from CO2 and H2 at low temperature: Insight on the reaction mechanism. Catalysis Today, 2010, 157(1–4): 462–466

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gong Jinlong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, W., Jinlong, G. Methanation of carbon dioxide: an overview. Front. Chem. Sci. Eng. 5, 2–10 (2011). https://doi.org/10.1007/s11705-010-0528-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-010-0528-3

Keywords

Navigation