Skip to main content
Log in

Customized lipid-coated magnetic mesoporous silica nanoparticle doped with ceria nanoparticles for theragnosis of intracerebral hemorrhage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Intracerebral hemorrhage (ICH), caused by the sudden rupture of an artery within the brain, is a devastating subtype of stroke, which currently has no effective treatment. Intense inflammatory reactions that occur in the peri-hematomal area after ICH are more deleterious than the hematoma itself, resulting in subsequent brain edema and neurologic deterioration. Thus, we developed lipid-coated magnetic mesoporous silica nanoparticles doped with ceria nanoparticles (CeNPs), abbreviated as LMCs, which have both potent anti-inflammatory therapeutic effects via scavenging reactive oxygen species and help in increasing the efficacy of magnetic resonance imaging enhancement in the peri-hematomal area. LMCs consist of mesoporous silica nanoparticle-supported lipid bilayers, which are loaded with large amounts of CeNPs for scavenging of reactive oxygen species, and iron oxide nanoparticles for magnetic resonance imaging contrast. LMCs loaded with CeNPs exhibited strong anti-oxidative and anti-inflammatory activities in vitro. In the rodent ICH model, intracerebrally injected LMCs reached the peri-hematomal area and were engulfed by macrophages, which were clearly visualized by magnetic resonance imaging of the brain. Moreover, LMCs reduced inflammatory macrophage infiltration, and thus significantly reduced brain edema. Finally, LMC treatment markedly improved neurologic outcomes of the animals with ICH. Thus, LMC is the first nanobiomaterial that successfully showed theragnostic effects in ICH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qureshi, A. I.; Tuhrim, S.; Broderick, J. P.; Batjer, H. H.; Hondo, H.; Hanley, D. F. Spontaneous intracerebral hemorrhage. N. Engl. J. Med. 2001, 344, 1450–1460.

    Article  Google Scholar 

  2. Labovitz, D. L.; Halim, A.; Boden-Albala, B.; Hauser, W. A.; Sacco, R. L. The incidence of deep and lobar intracerebral hemorrhage in whites, blacks, and Hispanics. Neurology 2005, 65, 518–522.

    Article  Google Scholar 

  3. Balami, J. S.; Buchan, A. M. Complications of intracerebral haemorrhage. Lancet Neurol. 2012, 11, 101–118.

    Article  Google Scholar 

  4. Mendelow, A. D.; Gregson, B. A.; Fernandes, H. M.; Murray, G. D.; Teasdale, G. M.; Hope, D. T.; Karimi, A.; Shaw, M. D. M.; Barer, D. H. STICH investigators. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): A randomised trial. Lancet 2005, 365, 387–397.

    Article  Google Scholar 

  5. Mayer, S. A.; Brun, N. C.; Begtrup, K.; Broderick, J.; Davis, S.; Diringer, M. N.; Skolnick, B. E.; Steiner, T. Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage. N. Engl. J. Med. 2008, 358, 2127–2137.

    Article  Google Scholar 

  6. Wang, J.; Doré, S. Inflammation after intracerebral hemorrhage. J. Cerebr. Blood Flow Met. 2007, 27, 894–908.

    Article  Google Scholar 

  7. Hua, Y.; Keep, R. F.; Hoff, J. T.; Xi, G. H. Brain injury after intracerebral hemorrhage: The role of thrombin and iron. Stroke 2007, 38, 759–762.

    Article  Google Scholar 

  8. Kress, G. J.; Dineley, K. E.; Reynolds, I. J. The relationship between intracellular free iron and cell injury in cultured neurons, astrocytes, and oligodendrocytes. J. Neurosci. 2002, 22, 5848–5855.

    Article  Google Scholar 

  9. Hu, X.; Tao, C. Y.; Gan, Q.; Zheng, J.; Li, H.; You, C. Oxidative stress in intracerebral hemorrhage: Sources, mechanisms, and therapeutic targets. Oxid. Med. Cell. Longev. 2016, 2016, 3215391.

    Google Scholar 

  10. Nakamura, T.; Keep, R. F.; Hua, Y.; Hoff, J. T.; Xi, G. H. Oxidative DNA injury after experimental intracerebral hemorrhage. Brain Res. 2005, 1039, 30–36.

    Article  Google Scholar 

  11. Katsu, M.; Niizuma, K.; Yoshioka, H.; Okami, N.; Sakata, H.; Chan, P. H. Hemoglobin-induced oxidative stress contributes to matrix metalloproteinase activation and blood–brain barrier dysfunction in vivo. J. Cerebr. Blood Flow Met. 2010, 30, 1939–1950.

    Article  Google Scholar 

  12. Wu, J. M.; Hua, Y.; Keep, R. F.; Schallert, T.; Hoff, J. T.; Xi, G. H. Oxidative brain injury from extravasated erythrocytes after intracerebral hemorrhage. Brain Res. 2002, 953, 45–52.

    Article  Google Scholar 

  13. Liu, K. J.; Rosenberg, G. A. Matrix metalloproteinases and free radicals in cerebral ischemia. Free Rad. Biol. Med. 2005, 39, 71–80.

    Article  Google Scholar 

  14. Lyden, P. D.; Shuaib, A.; Lees, K. R.; Davalos, A.; Davis, S. M.; Diener, H. C.; Grotta, J. C.; Ashwood, T. J.; Hardemark, H. G.; Svensson, H. H. et al. Safety and tolerability of NXY-059 for acute intracerebral hemorrhage: The CHANT Trial. Stroke 2007, 38, 2262–2269.

    Article  Google Scholar 

  15. Celardo, I.; Pedersen, J. Z.; Traversa, E.; Ghibelli, L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale 2011, 3, 1411–1420.

    Article  Google Scholar 

  16. Pirmohamed, T.; Dowding, J. M.; Singh, S.; Wasserman, B.; Heckert, E.; Karakoti, A. S.; King, J. E.; Seal, S.; Self, W. T. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 2010, 46, 2736–2738.

    Article  Google Scholar 

  17. Singh, S.; Dosani, T.; Karakoti, A. S.; Kumar, A.; Seal, S.; Self, W. T. A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties. Biomaterials 2011, 32, 6745–6753.

    Article  Google Scholar 

  18. Xu, C.; Qu, X. G. Cerium oxide nanoparticle: A remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 2014, 6, e90.

    Article  Google Scholar 

  19. Deshpande, S.; Patil, S.; Kuchibhatla, S. V.; Seal, S. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl. Phys. Lett. 2005, 87, 133113.

    Article  Google Scholar 

  20. Korsvik, C.; Patil, S.; Seal, S.; Self, W. T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 2007, 1056–1058.

    Google Scholar 

  21. Heckert, E. G.; Karakoti, A. S.; Seal, S.; Self, W. T. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 2008, 29, 2705–2709.

    Article  Google Scholar 

  22. Celardo, I.; De Nicola, M.; Mandoli, C.; Pedersen, J. Z.; Traversa, E.; Ghibelli, L. Ce3+ ions determine redox-dependent anti-apoptotic effect of cerium oxide nanoparticles. ACS Nano 2011, 5, 4537–4549.

    Article  Google Scholar 

  23. Hirst, S. M.; Karakoti, A. S.; Tyler, R. D.; Sriranganathan, N.; Seal, S.; Reilly, C. M. Anti-inflammatory properties of cerium oxide nanoparticles. Small 2009, 5, 2848–2856.

    Article  Google Scholar 

  24. Cimini, A.; D’ Angelo, B.; Das, S.; Gentile, R.; Benedetti, E.; Singh, V.; Monaco, A. M.; Santucci, S.; Seal, S. Antibodyconjugated PEGylated cerium oxide nanoparticles for specific targeting of Aß aggregates modulate neuronal survival pathways. Acta Biomater. 2012, 8, 2056–2067.

    Article  Google Scholar 

  25. Lu, J.; Liong, M.; Li, Z. X.; Zink, J. I.; Tamanoi, F. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 2010, 6, 1794–1805.

    Article  Google Scholar 

  26. Trewyn, B. G.; Slowing, I. I.; Giri, S.; Chen, H. T.; Lin, V. S. Y. Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release. Acc. Chem. Res. 2007, 40, 846–853.

    Article  Google Scholar 

  27. Tang, F. Q.; Li, L. L.; Chen, D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater. 2012, 24, 1504–1534.

    Article  Google Scholar 

  28. Ashley, C. E.; Carnes, E. C.; Phillips, G. K.; Padilla, D.; Durfee, P. N.; Brown, P. A.; Hanna, T. N.; Liu, J. W.; Phillips, B.; Carter, M. B. et al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat. Mater. 2011, 10, 389–397.

    Article  Google Scholar 

  29. Kim, J.; Kim, H. S.; Lee, N.; Kim, T.; Kim, H.; Yu, T.; Song, I. C.; Moon, W. K.; Hyeon, T. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem., Int. Ed. 2008, 47, 8438–8441.

    Article  Google Scholar 

  30. Yu, T.; Lim, B.; Xia, Y. N. Aqueous-phase synthesis of single-crystal ceria nanosheets. Angew. Chem., Int. Ed. 2010, 49, 4484–4487.

    Article  Google Scholar 

  31. Fortes, G. B.; Alves, L. S.; de Oliveira, R.; Dutra, F. F.; Rodrigues, D.; Fernandez, P. L.; Souto-Padron, T.; De Rosa, M. J.; Kelliher, M.; Golenbock, D. et al. Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production. Blood 2012, 119, 2368–2375.

    Article  Google Scholar 

  32. MacLellan, C. L.; Silasi, G.; Poon, C. C.; Edmundson, C. L.; Buist, R.; Peeling, J.; Colbourne, F. Intracerebral hemorrhage models in rat: Comparing collagenase to blood infusion. J. Cerebr. Blood Flow Met. 2008, 28, 516–525.

    Article  Google Scholar 

  33. Kang, D. W.; Kim, C. K.; Jeong, H. G.; Soh, M.; Kim, T.; Choi, I. Y.; Ki, S. K.; Kim, D. Y.; Yang, W.; Hyeon, T. et al. Biocompatible custom ceria nanoparticles against reactive oxygen species resolve acute inflammatory reaction after intracerebral hemorrhage. Nano Res. 2017, 10, 2743–2760.

    Article  Google Scholar 

  34. Keep, R. F.; Hua, Y.; Xi, G. H. Brain water content: A misunderstood measurement? Transl. Stroke Res. 2012, 3, 263–265.

    Article  Google Scholar 

  35. Jung, K. H.; Chu, K.; Jeong, S. W.; Han, S. Y.; Lee, S. T.; Kim, J. Y.; Kim, M.; Roh, J. K. HMG-CoA reductase inhibitor, atorvastatin, promotes sensorimotor recovery, suppressing acute inflammatory reaction after experimental intracerebral hemorrhage. Stroke 2004, 35, 1744–1749.

    Article  Google Scholar 

  36. Hua, Y.; Schallert, T.; Keep, R. F.; Wu, J. M.; Hoff, J. T.; Xi, G. H. Behavioral tests after intracerebral hemorrhage in the rat. Stroke 2002, 33, 2478–2484.

    Article  Google Scholar 

  37. Xi, G. H.; Hua, Y.; Bhasin, R. R.; Ennis, S. R.; Keep, R. F.; Hoff, J. T. Mechanisms of edema formation after intracerebral hemorrhage: Effects of extravasated red blood cells on blood flow and blood-brain barrier integrity. Stroke 2001, 32, 2932–2938.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (No. HI17C0076), and also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. NRF-2015R1A2A2A01007770).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaeyun Kim or Seung-Hoon Lee.

Electronic supplementary material

12274_2017_1924_MOESM1_ESM.pdf

Customized lipid-coated magnetic mesoporous silica nanoparticle doped with ceria nanoparticles for theragnosis of intracerebral hemorrhage

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cha, B.G., Jeong, HG., Kang, DW. et al. Customized lipid-coated magnetic mesoporous silica nanoparticle doped with ceria nanoparticles for theragnosis of intracerebral hemorrhage. Nano Res. 11, 3582–3592 (2018). https://doi.org/10.1007/s12274-017-1924-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1924-5

Keywords

Navigation