Skip to main content
Log in

Essential oils as solvents and core materials for the preparation of photo-responsive polymer nanocapsules

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Light-triggered release of active ingredients from polymeric nanosized capsules can be employed in a wide range of applications, such as biomedicine, active packaging, and cosmetics. However, the preparation of core-shell polymeric nanocarriers typically involves the use of toxic organic solvents. To improve the sustainability and safety of nanocapsule applications, we demonstrate that natural essential oils can be used both as solvent and active material in light-responsive nanocapsules synthesized via miniemulsion polycondensation. The documented antimicrobial, anti-inflammatory, and antioxidant activity of essential oils enables the design of multipurpose light-responsive delivery platforms. The photo-responsive behavior of the capsules, achieved by means of photochromic azobenzene segments embedded in the capsule shell, is triggered by UV light irradiation (λmax = 360 nm). Light-induced release kinetics of the essential oils and a fluorescent probe molecule, coumarin-6, is evaluated via UV-vis spectroscopy and spectrofluorimetry, respectively, demonstrating the efficiency and reliability of the release mechanism. Biological tests prove that the capsules are non-cytotoxic and readily internalized by cells, indicating the suitability of these smart nanocarriers for biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12: 991–1003.

    Article  Google Scholar 

  2. Wei, H. G.; Wang, Y. R.; Guo, J.; Shen, N. Z.; Jiang, D. W.; Zhang, X.; Yan, X. R.; Zhu, J. H.; Wang, Q.; Shao, L. et al. Advanced micro/nanocapsules for self-healing smart anticorrosion coatings. J. Mater. Chem. A. 2015, 3: 469–480.

    Article  Google Scholar 

  3. Hofmeister, I.; Landfester, K.; Taden, A. pH-sensitive nanocapsules with barrier properties: Fragrance encapsulation and controlled release. Macromolecules 2014, 47: 5768–5773.

    Article  Google Scholar 

  4. Marturano, V.; Cerruti, P.; Carfagna, C.; Giamberini, M.; Tylkowski, B.; Ambrogi, V. Photo-responsive polymer nanocapsules. Polymer 2015, 70: 222–230.

    Article  Google Scholar 

  5. Tylkowski, B.; Pregowska, M.; Jamowska, E.; Garcia-Valls, R.; Giamberini, M. Preparation of a new lightly cross-linked liquid crystalline polyamide by interfacial polymerization. Application to the obtainment of microcapsules with phototriggered release. Eur. Polymer. J. 2009, 45: 1420–1432.

    Article  Google Scholar 

  6. Bogdanowicz, K. A.; Tylkowski, B.; Giamberini, M. Preparation and characterization of light-sensitive microcapsules based on a liquid crystalline polyester. Langmuir 2013, 29: 1601–1608.

    Article  Google Scholar 

  7. Jiang, F. J.; Chen, S.; Cao, Z. Q.; Wang, G. J. A photo, temperature, and pH responsive spiropyran-functionalized polymer: Synthesis, self-assembly and controlled release. Polymer 2016, 83: 85–91.

    Article  Google Scholar 

  8. Bédard, M.; Skirtach, A. G.; Sukhorukov, G. B. Optically driven encapsulation using novel polymeric hollow shells containing an azobenzene polymer. Macromol. Rapid Commun. 2007, 28: 1517–1521.

    Article  Google Scholar 

  9. Goulet-Hanssens, A.; Barrett, C. J. Photo-control of biological systems with azobenzene polymers. J. Polym. Sci. Part A: Polym. Chem. 2013, 51: 3058–3070.

    Article  Google Scholar 

  10. Marturano, V.; Cerruti, P.; Giamberini, M.; Tylkowski, B.; Ambrogi, V. Light-responsive polymer micro- and nanocapsules. Polymers 2017, 9: 8.

    Article  Google Scholar 

  11. Kimura, E. T.; Ebert, D. M.; Dodge, P. W. Acute toxicity and limits of solvent residue for sixteen organic solvents. Toxicol. Appl. Pharmacol. 1971, 19: 699–704.

    Article  Google Scholar 

  12. Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—a review. Int. J. Food Microbiol. 2004, 94: 223–253.

    Article  Google Scholar 

  13. Hammer, K. A.; Carson, C. F.; Riley, T. V. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 1999, 86: 985–990.

    Article  Google Scholar 

  14. Dorman, H. J. D.; Deans, S. G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88: 308–316.

    Article  Google Scholar 

  15. Kung, M. L.; Lin, P. Y.; Hsieh, C. W.; Tai, M. H.; Wu, D. C.; Kuo, C. H.; Hsieh, S. L.; Chen, H. T.; Hsieh, S. Bifunctional peppermint oil nanoparticles for antibacterial activity and fluorescence imaging. ACS Sustainable Chem. Eng. 2014, 2: 1769–1775.

    Article  Google Scholar 

  16. Licciardello, F.; Muratore, G.; Suma, P.; Russo, A.; Nerín, C. Effectiveness of a novel insect-repellent food packaging incorporating essential oils against the red flour beetle (Tribolium castaneum). Innov. Food Sci. Emerg. Technol. 2013, 19: 173–180.

    Article  Google Scholar 

  17. Isman, M. B. Pesticides based on plant essential oils: Phytochemical and practical considerations. In Medicinal and Aromatic Crops: Production, Phytochemistry, and Utilization. Jeliazkov, V. D.; Cantrell, C. L., Eds.; ACS: Washington, DC, 2016; pp 13–26.

    Chapter  Google Scholar 

  18. Langeveld, W. T.; Veldhuizen, E. J. A.; Burt, S. A. Synergy between essential oil components and antibiotics: A review. Crit. Rev. Microbiol. 2014, 40: 76–94.

    Article  Google Scholar 

  19. Gómez-Estaca, J.; López-de-Dicastillo, C.; Hernández-Muñoz, P.; Catalá, R.; Gavara, R. Advances in antioxidant active food packaging. Trends Food Sci. Technol. 2014, 35: 42–45.

    Article  Google Scholar 

  20. Campos C. A.; Gerschenson L. N.; Flores S. K.; Development of edible films and coatings with antimicrobial activity. Food Bioprocess. Technol. 2011, 4: 849–875.

    Article  Google Scholar 

  21. Persico, P.; Ambrogi, V.; Carfagna, C.; Cerruti, P.; Ferrocino, I.; Mauriello, G.; Nanocomposite polymer films containing carvacrol for antimicrobial active packaging. Polym. Eng. Sci. 2009, 49: 1447–1455.

    Article  Google Scholar 

  22. Gomes, C.; Moreira, R. G.; Castell-Perez, E. Poly(DLlactide- co-glycolide) (PLGA) nanoparticles with entrapped trans-cinnamaldehyde and eugenol for antimicrobial delivery applications. J. Food Sci. 2011, 76, N16–N24.

    Article  Google Scholar 

  23. Pan, K.; Chen, H. Q.; Davidson, P. M.; Zhong, Q. X. Thymol nanoencapsulated by sodium caseinate: Physical and antilisterial properties. J. Agric. Food Chem. 2014, 62: 1649–1657.

    Article  Google Scholar 

  24. Chen, N. S.; Dempere, L. A.; Tong, Z. H. Synthesis of pH-responsive lignin-based nanocapsules for controlled release of hydrophobic molecules. ACS Sustain. Chem. Eng. 2016, 4: 5204–5211.

    Article  Google Scholar 

  25. Fleige, E.; Quadir, M. A.; Haag, R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Adv. Drug Deliv. Rev. 2012, 64: 866–884.

    Article  Google Scholar 

  26. Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils–A review. Food Chem. Toxic. 2008, 46: 446–475.

    Article  Google Scholar 

  27. Conte, R.; Marturano, V.; Peluso, G.; Calarco, A.; Cerruti, P. Recent advances in nanoparticle-mediated delivery of anti-inflammatory phytocompounds. Int. J. Mol. Sci. 2017, 18: 709.

    Article  Google Scholar 

  28. Torini, L.; Argillier, J. F.; Zydowicz, N. Interfacial polycondensation encapsulation in miniemulsion. Macromolecules 2005, 38: 3225–3236.

    Article  Google Scholar 

  29. Calarco, A.; Bosetti, M.; Margarucci, S.; Fusaro, L.; Nicolì, E.; Petillo, O.; Cannas, M.; Galderisi, U.; Peluso, G. The genotoxicity of PEI-based nanoparticles is reduced by acetylation of polyethylenimine amines in human primary cells. Toxicol. Lett. 2013, 218: 10–17.

    Article  Google Scholar 

  30. Kalemba, D.; Kunicka, A. Antibacterial and antifungal properties of essential oils. Curr. Med. Chem. 2003, 10: 813–829.

    Article  Google Scholar 

  31. Paster, N.; Juven, B. J.; Shaaya, E.; Menasherov, M.; Nitzan, R.; Weisslowicz, H.; Ravid, U. Inhibitory effect of oregano and thyme essential oils on moulds and foodborne bacteria. Lett. Appl. Microbiol. 1990, 11: 33–37.

    Article  Google Scholar 

  32. Wilson, C. L.; Solar, J. M.; El Ghaouth, A.; Wisniewski, M. E. Rapid evaluation of plant extracts and essential oils for antifungal activity against Botrytis Cinerea. Plant Dis. 1997, 81: 204–210.

    Article  Google Scholar 

  33. Herrmann, A.; Debonneville, C.; Laubscher, V.; Aymard, L. Dynamic headspace analysis of the light-induced controlled release of perfumery aldehydes and ketones from a-keto esters in bodycare and household applications. Flavour Fragr. J. 2000, 15: 415–420.

    Article  Google Scholar 

  34. Lee, S. J.; Umano, K.; Shibamoto, T.; Lee, K. G. Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chem. 2005, 91: 131–137.

    Article  Google Scholar 

  35. Mora-Huertas, C. E.; Fessi, H.; Elaissari, A. Polymer-based nanocapsules for drug delivery. Int. J. Pharm. 2010, 385: 113–142.

    Article  Google Scholar 

  36. Dispinar, T.; Colard, C. A. L.; Du Prez, F. E.; Polyurea microcapsules with a photocleavable shell: UV-triggered release. Polym. Chem. 2013, 4: 763–772.

    Article  Google Scholar 

  37. Ziegler, H. Flavourings: Production, Composition, Applications, Regulations; 2nd ed. John Wiley & Sons: Hoboken, New Jersey, 2007.

    Book  Google Scholar 

  38. Lin, H.; Xiao, W.; Qin, S. Y.; Cheng, S. X.; Zhang, X. Z. Switch on/off microcapsules for controllable photosensitive drug release in a ‘release-cease-recommence’ mode. Polym. Chem. 2014, 5: 4437–4440.

    Google Scholar 

  39. Peteu, S. F.; Oancea, F.; Sicuia, O. A.; Constantinescu, F.; Dinu, S. Responsive polymers for crop protection. Polymers 2010, 2: 229–251.

    Article  Google Scholar 

  40. Son, K. J.; Yoon, H. J.; Kim, J. H.; Jang, W. D.; Lee, Y.; Koh, W. G. Photosensitizing hollow nanocapsules for combination cancer therapy. Angew. Chem., Int. Ed. 2011, 50: 11968–11971.

    Article  Google Scholar 

  41. Mastromatteo, M.; Mastromatteo, M.; Conte, A.; Del Nobile, M. A. Advances in controlled release devices for food packaging applications. Trends Food Sci. Technol. 2010, 21: 591–598.

    Article  Google Scholar 

  42. Hanno, I.; Anselmi, C.; Bouchemal, K. Polyamide nanocapsules and nano-emulsions containing Parsol® MCX and Parsol® 1789: In vitro release, ex vivo skin penetration and photo-stability studies. Pharm. Res. 2012, 29: 559–573.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Cristina Del Barone (IPCB-CNR) for her support with electron microscopy analysis. This research was supported by Italian Ministry of University and Research (MIUR) in the framework of the CTN01_00230_248064 Safe & Smart project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica Ambrogi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marturano, V., Bizzarro, V., De Luise, A. et al. Essential oils as solvents and core materials for the preparation of photo-responsive polymer nanocapsules. Nano Res. 11, 2783–2795 (2018). https://doi.org/10.1007/s12274-017-1908-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1908-5

Keywords

Navigation