Skip to main content
Log in

Tiny Carriers, Big Impact: A Review of Nanomaterial Systems for β-Carotene Bioavailability

  • Review
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

β-Carotene (βC) is esteemed for its antioxidant attributes and its formidable anti-cancer efficacy, rendering it an indispensable bioactive constituent within the alimentary sector. Nonetheless, the pronounced hydrophobic nature of βC curtails its reactivity and bioaccessibility in its crystalline guise. Due to its hydrocarbon composition, βC exhibits pronounced lipophilicity, culminating in its aqueous insolubility. Research delineates that a mere 20% of βC in its crystalline state is bioaccessible post-ingestion via unprocessed vegetables. To surmount these impediments, an array of non-thermal and mechanical techniques has been harnessed to encapsulate βC, thus preserving the integrity of the compound. The direct amalgamation of such bioactives into edibles poses a formidable challenge, necessitating their safeguarding until their efficacious assimilation within the human organism. Encapsulation emerges as a superior modality, ensuring the preservation of βC en route to its designated locus of activity. This methodology provides a bulwark for sensitive bioactives against deleterious influences, including oxidative stress, humidity, luminosity, and thermal extremes. The deployment of nanocarriers, encompassing polymer nanoparticles, liposomes, nanoemulsions, solid lipid nanocarriers (SLNs), and nanostructured lipid carriers (NLCs), has mitigated these quandaries by amplifying the solubility and biostability of βC. This critical review scrutinizes a spectrum of nanocarriers investigated for the precise conveyance and modulated liberation of βC, accentuating the strides in this domain and their prospective implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gupta, R. C., Lall, R., Srivastava, A. (2021). Nutraceuticals: efficacy, safety and toxicity. Academic Press.

  2. Kumar, K., & Kumar, S. (2015). South Asian Journal Of Food Technology And Environment, 1, 116.

  3. Sikand, G., Kris-Etherton, P., & Boulos, N. M. (2015). Current Cardiology Reports, 17, 1.

  4. Le Gouic, A. V., Harnedy, P. A., & FitzGerald, R. J. (2018). Bioactive molecules in food. pp. 1–35.

  5. Watson, R. R., & Preedy, V. R. (2014). Bioactive nutraceuticals and dietary supplements in neurological and brain disease: prevention and therapy. Academic Press.

  6. Ludwig, D. S., Hu, F. B., Tappy, L., & Brand-Miller, J. (2018). Bmj, 361, 1.

  7. Aune, D., Chan, D. S., Lau, R, Vieira, R, Greenwood, D. C., Kampman, E., & Norat, T. (2011). Bmj, 343, 1.

  8. Kris-Etherton, P. M., Harris, W. S., & Appel, L. J. (2002). Circulation, 106, 2747.

  9. Li, Y., Innocentin, S., Withers, D. R., Roberts, N. A., Gallagher, A. R., Grigorieva, E. F., Wilhelm, C., & Veldhoen, M. (2011). Cell, 147, 629.

    Article  Google Scholar 

  10. Palace, V. P., Khaper, N., Qin, Q., & Singal, P. K. (1999). Free Radical Biology and Medicine, 26, 746.

    Article  Google Scholar 

  11. Rodriguez-Amaya D. B. (1997). Carotenoids and food preparation: the retention of provitamin A carotenoids in prepared, processed and stored foods. Citeseer, 1–93.

  12. Stahl, W., & Sies, H. (2003). Molecular Aspects of Medicine, 24, 345.

  13. Morales, M., Zapata, S., Jaimes, T. R., Rosales, S., Alzate, A.F., Maldonado Celis, M. E., Zamorano, P., & Rojano, B. A. (2017), Journal of Medicinal Plants Research11, 144.

  14. Krinsky, N. I., & Johnson, E. J. (2005). Molecular Aspects of Medicine, 26, 459.

  15. Eggersdorfer, M., & Wyss, A. (2018). Archives of Biochemistry and Biophysics, 652, 18.

  16. Group, A.-R.E.D.S.R. (2001). Archives of ophthalmology, 119, 1417.

  17. Higdon, J., Drake, V., Delage, B., Johnson, E., Mayer, J. (2016). Internet: https://lpi.oregonstate.edu/mic/dietary-factors/phytochemicals/carotenoids [cited 2017 Jun 21]

  18. Miller, N. J., Sampson, J., Candeias, L. P., Bramley, P. M., & Rice-Evans, C. A. (1996). FEBS letters, 384, 240.

    Article  Google Scholar 

  19. Chen, J., Li, F., Li, Z., McClements, D. J., & Xiao, H. (2017). Food Hydrocolloids, 69, 49.

    Article  Google Scholar 

  20. Alvarez, R., Vaz, B., Gronemeyer, H., & de Lera, A. R. (2014). Chemical Reviews, 114, 1.

    Article  Google Scholar 

  21. Kasperczyk, S., Dobrakowski, M., Kasperczyk, J., Ostałowska, A., Zalejska-Fiolka, J., & Birkner, E. (2014). Toxicology and Applied Pharmacology, 280, 36.

  22. Sluijs, I., Cadier, E., Beulens, J., Spijkerman, A., & Van der Schouw, Y. (2015). Nutrition Metabolism and Cardiovascular Diseases, 25, 376.

    Article  Google Scholar 

  23. Liu, J., Shi, W.-Q., Cao, Y., He, L.-P., Guan, K., Ling, W.-H., & Chen, Y.-M. (2014). British Journal of Nutrition, 112, 2041.

  24. Tanaka, T., Shnimizu, M., & Moriwaki, H. (2012). Molecules, 17, 3202.

    Article  Google Scholar 

  25. Chen, H., & Zhong, Q. (2015). Food Chemistry, 174, 630.

    Article  Google Scholar 

  26. Boon, C. S., McClements, D. J., Weiss, J., & Decker, E. A. (2010). Critical Reviews in Food Science and Nutrition, 50, 515.

  27. Lamprecht, A., Ubrich, N., Yamamoto, H., Schäfer, U., Takeuchi, H., Maincent, P., Kawashima, Y., & Lehr, C.-M. (2001). Journal of Pharmacology and Experimental Therapeutics, 299, 775.

    Google Scholar 

  28. Ezhilarasi, P., Karthik, P., Chhanwal, N., & Anandharamakrishnan, C. (2013). Food and Bioprocess Technology, 6, 628.

    Article  Google Scholar 

  29. McClements, D. J. (2015). Advances in Colloid and Interface Science, 219, 27.

  30. Müller, R. H., Mäder, K., & Gohla, S. (2000). European Journal of Pharmaceutics and Biopharmaceutics, 50, 161.

  31. Mozafari, M. R. (2006). Nanocarrier technologies: frontiers of nanotherapy. Springer.

  32. Neethirajan, S., & Jayas, D. S. (2011). Food and Bioprocess Technology, 4, 39.

  33. Gupta, N. K., & Dixit, V. K. (2011). Journal of Pharmaceutical Sciences, 100, 1987.

  34. Rodriguez-Amaya, D. B. (2015). Food carotenoids: chemistry, biology and technology. John Wiley & Sons.

  35. Mayne, S. T. (1996). The FASEB Journal, 10, 690.

    Article  Google Scholar 

  36. Castenmiller, J. J., & West, C. E. (1998). Annual Review of Nutrition, 18, 19.

  37. Tanumihardjo, S. A. (2011). The American Journal of Clinical Nutrition, 94, 658S.

  38. Ezzati, M., Lopez, A. D., Rodgers, A. A., & Murray C. J. (2004). Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors. World Health Organization.

  39. Olson, J. A. (1999). Archivos Latinoamericanos de Nutrición, 49, 7S.

    Google Scholar 

  40. Dowling, J. E. (1960). Nature, 188, 114.

    Article  Google Scholar 

  41. Biesalski, H., & Nohr, D. (2003). Molecular Aspects of Medicine, 24, 431.

  42. Jeyakodi, S., Krishnakumar, A., & Chellappan, D. K. (2018). Nutrition & Food Science International Journal, 7, 1.

  43. Palozza, P., & Krinsky, N. I. (1992). Methods in Enzymology, 213, 403.

  44. Ziegler, R. G. (1989). The Journal of Nutrition, 119, 116.

  45. Block, G., Patterson, B., & Subar, A. (1992). Nutrition and Cancer, 18, 1.

  46. Liu, C., Wang, X. D., Mucci, L., Gaziano, J. M., & Zhang, S. M. (2009). Cancer: Interdisciplinary International Journal of the American Cancer Society, 115, 1049.

  47. Mathew, M. C., Ervin, A. M., Tao, J., & Davis, R. M. (2012). Cochrane Database of Systematic Reviews.

  48. Mondul, A. M., Sampson, J. N., Moore, S. C., Weinstein, S. J., Evans, A. M., Karoly, E. D., Virtamo, J., & Albanes, D. (2013). The American Journal of Clinical Nutrition, 98, 488.

  49. Mandrich, L., Esposito, A. V., Costa, S., & Caputo, E. (2023). Molecules, 28, 7161.

    Article  Google Scholar 

  50. Virtamo, J., Taylor, P. R., Kontto, J., Männistö, S., Utriainen, M., Weinstein, S. J., Huttunen, J., & Albanes, D. (2014). International Journal of Cancer, 135, 178.

    Article  Google Scholar 

  51. Niranjana, R., Gayathri, R., Mol, S. N., Sugawara, T., Hirata, T., Miyashita, K., & Ganesan, P. (2015). Journal of Functional Foods, 18, 968.

    Article  Google Scholar 

  52. Chen, Q.-H., Wu, B.-K., Pan, D., Sang, L.-X., & Chang, B. (2021). World Journal of Clinical Cases, 9, 6591.

    Article  Google Scholar 

  53. Burton, G. W., & Ingold, K. (1984). Science, 224, 569.

    Article  Google Scholar 

  54. Rao, A. V., & Rao, L. G. (2007). Pharmacological Research, 55, 207.

  55. Maria, A. G., Graziano, R., & Nicolantonio, D. O. (2015). Food & Nutrition Research, 59, 26762.

  56. Stahl, W., & Sies, H. (2005). Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1740, 101.

  57. Sies, H., & Stahl, W. (1995). The American Journal of Clinical Nutrition, 62, 1315S.

  58. Paiva, S. A., & Russell, R. M. (1999). Journal of the American College of Nutrition, 18, 426.

  59. Gammone, M. A., Riccioni, G., & D’Orazio, N. (2015). Marine Drugs, 13, 6226.

    Article  Google Scholar 

  60. Manjunath, K., Reddy, J. S., & Venkateswarlu, V. (2005). Methods and Findings in Experimental and Clinical Pharmacology, 27, 127.

    Article  Google Scholar 

  61. de Oliveira, B. F., Costa, D. C., Nogueira-Machado, J. A., & Chaves, M. M. (2013). Diabetes/Metabolism Research and Reviews, 29, 636.

    Article  Google Scholar 

  62. Przybylska, S., & Tokarczyk, G. (2022). International Journal of Molecular Sciences, 23, 1957.

  63. Wang, M., Tang, R., Zhou, R., Qian, Y., & Di, D. Frontiers in Nutrition, 10, 1154239.

  64. Broekmans, W. M., Klöpping-Ketelaars, I. A., Schuurman, C. R., Verhagen, H., van den Berg, H., Kok, F. J., & van Poppel, G. (2000). Journal of Nutrition, 130, 1578.

    Article  Google Scholar 

  65. Bjelakovic, G., Nikolova, D., Gluud, L. L., Simonetti, R. G., & Gluud, C. (2007). JAMA, 297, 842.

    Article  Google Scholar 

  66. Mathews-Roth, M. M., Pathak, M. A., Fitzpatrick, T., Harber, L. H., & Kass, E. H. (1977). Archives of Dermatology, 113, 1229.

  67. University of Maryland Medical Centre, USA.

  68. Minder, E., Schneider-Yin, X., Steurer, J., & Bachmann, L. (2009). Cellular and Molecular Biology, 55, 84.

  69. Holme, S. A., Anstey, A. V., Finlay, A. Y., Elder, G. H., & Badminton, M. N. (2006). British Journal of Dermatology, 155, 574.

    Article  Google Scholar 

  70. Nagao, T., Warnakulasuriya, S., Nakamura, T., Kato, S., Yamamoto, K., Fukano, H., Suzuki, K., Shimozato, K., & Hashimoto, S. (2015). International Journal of Cancer, 136, 1708.

    Article  Google Scholar 

  71. Yuan, C., Fondell, E., Ascherio, A., Okereke, O. I., Grodstein, F., Hofman, A., & Willett, W. C. (2020). The Journal of Nutrition, 150, 1871.

  72. Archives of Internal Medicine, Harvard Medical School, USA. (2007).

  73. Háda, M., Nagy, V., Deli, J., & Agócs, A. (2012). Molecules, 17, 5003.

    Article  Google Scholar 

  74. Molteni, C., La Motta, C., & Valoppi, F. (2022). Antioxidants, 11, 1931.

  75. Liu, W. Y., Hsieh, Y. S., Ko, H. H., & Wu, Y. T. (2023). Pharmaceutics, 15, 485.

  76. Selim, K., Tsimidou, M., & Biliaderis, C. (2000). Food Chemistry, 71, 199.

    Article  Google Scholar 

  77. Ebadi, M., Mohammadi, M., Pezeshki, A., & Jafari, S. M. (2023). In S. M. Jafari, A. Rashidinejad, & J. Simal-Gandara (Eds.), Handbook of Food Bioactive Ingredients: Properties and Applications (pp. 603–628). Springer International Publishing.

  78. Yang, C., Yan, H., Jiang, X., Xu, H., Tsao, R., & Zhang, L. (2020). Journal of Agricultural and Food Chemistry, 68, 13844.

    Article  Google Scholar 

  79. Khoo, H. E., Prasad, K. N., Kong, K. W., Jiang, Y., & Ismail, A. (2011). Molecules, 16, 1710.

    Article  Google Scholar 

  80. Al-Juhaimi, F., Ghafoor, K., Özcan, M. M., Jahurul, M. H. A., Babiker, E. E., Jinap, S., Sahena, F., Sharifudin, M. S., & Zaidul, I. S. M. (2018). Journal of Food Science and Technology, 55, 3872.

  81. Jadhav, H. B., Annapure, U. S., & Deshmukh, R. R. (2021). Frontiers in Nutrition, 8, 657090.

    Article  Google Scholar 

  82. Alu'datt, M. H., Alrosan, M., Gammoh, S., Tranchant, C. C., Alhamad, M. N., Rababah, T., Zghoul, R. A., Alzoubi, H., Ghatasheh, S., Ghozlan, K., & Tan, T.-C. (2022). Food Bioscience, 50, 101971.

  83. Ali, A., Wei, S., Liu, Z., Fan, X., Sun, Q., Xia, Q., Liu, S., Hao, J., & Deng, C. (2021). LWT, 147, 111549.

    Article  Google Scholar 

  84. Lavelli, V., & Sereikaitė, J. (2022). Foods, 11, 437.

  85. Mahmood, Q., Lu, N.-N., Wang, X.-J., Du, Y.-Z., Ghori, M. U., Tian, B., Yang, H.-Y., Han, F., Jiang, G.-J., & Lu, Y.-M. (2023). Phytomedicine Plus, 3, 100426.

    Article  Google Scholar 

  86. Maurya, V. K., Shakya, A., Aggarwal, M., Gothandam, K. M., Bohn, T., & Pareek, S. (2021). Antioxidants, 10, 426.

  87. Yildiz, Z. I., Topuz, F., Kilic, M. E., Durgun, E., & Uyar, T. (2023). Food Chemistry, 423, 136284.

    Article  Google Scholar 

  88. Augustin, M., Sanguansri, L. (2008). Food materials science, Springer, p. 577–601

  89. Ayyaril, S.S., Shanableh, A., Bhattacharjee, S., Rawas-Qalaji, M., Cagliani, R., Shabib, A.G., & Imran Khan, M. (2023). Results in Engineering, 18, 101094.

  90. Ayala-Fuentes, J. C., & Chavez-Santoscoy, R. A. (2021). Foods, 10, 2701.

  91. de Alcantara Lemos, J., Oliveira, A., Araujo, R. S., Townsend, D. M., Ferreira, L. A. M., & de Barros, A. L. B. (2021). Biomedicine & Pharmacotherapy, 143, 112137.

  92. Gibbs, S. K. F. (1999). Inteaz Alli, Catherine N. Mulligan, Bernard, International Journal of Food Sciences and Nutrition, 50, 213.

  93. Xu, Y., Yan, X., Zheng, H., Li, J., Wu, X., Xu, J., Zhen, Z., & Du, C. (2024). Food Chemistry: X, 21, 101240.

    Google Scholar 

  94. Martins, V. F. R., Pintado, M. E., Morais, R., & Morais, A. (2022). Foods, 12, 32.

  95. Zabot, G. L., Schaefer Rodrigues, F., Polano Ody, L., Vinícius Tres, M., Herrera, E., Palacin, H., Córdova-Ramos, J. S., Best, I., & Olivera-Montenegro, L. (2022). Polymers, 14, 4194.

  96. Mohammed, N. K., Tan, C. P., Manap, Y. A., Muhialdin, B. J., & Hussin, A. S. M. (2020). Molecules, 25, 3873.

  97. Pateiro, M., Gómez, B., Munekata, P. E. S., Barba, F. J., Putnik, P., Kovačević, D. B., & Lorenzo, J. M. (2021). Molecules, 26, 1547.

  98. Pezeshki, A., Hamishehkar, H., Ghanbarzadeh, B., Fathollahy, I., Nahr, F. K., Heshmati, M. K., & Mohammadi, M. (2019). Food Bioscience, 27, 11.

  99. López, K. L., Ravasio, A., González-Aramundiz, J. V., & Zacconi, F. C. (2023). Pharmaceutics, 15, 1333.

  100. Müller, R. H., Radtke, M., & Wissing, S. A. (2002). Advanced Drug Delivery Reviews, 54, S131.

  101. Mehta, M., Bui, T. A., Yang, X., Aksoy, Y., Goldys, E. M., & Deng, W. (2023). ACS Materials Au, 3, 600.

    Article  Google Scholar 

  102. Sakellari, G. I., Zafeiri, I., Batchelor, H., & Spyropoulos, F. (2021). Food Hydrocolloids for Health, 1, 100024.

  103. Pan, Y., Tikekar, R. V., & Nitin, N. (2016). International Journal of Pharmaceutics, 511, 322.

  104. Szczepanowicz, K., & Warszyński, P. (2015). Journal of Microencapsulation, 32, 123.

    Article  Google Scholar 

  105. Ahadian, S., Finbloom, J. A., Mofidfar, M., Diltemiz, S. E., Nasrollahi, F., Davoodi, E., Hosseini, V., Mylonaki, I., Sangabathuni, S., Montazerian, H., Fetah, K., Nasiri, R., Dokmeci, M. R., Stevens, M. M., Desai, T. A., & Khademhosseini, A. (2020). Advanced Drug Delivery Reviews, 157, 37.

  106. Adepu, S., & Ramakrishna, S. (2021). Molecules, 26, 5905.

  107. Li, L., Zeng, Y., Chen, M., & Liu, G. (2022). Polymers, 14, 3278.

  108. Hawthorne, D., Pannala, A., Sandeman, S., & Lloyd, A. (2022). Journal of Drug Delivery Science and Technology, 78, 103936.

    Article  Google Scholar 

  109. Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M.d. P., Acosta-Torres, L. S., Diaz-Torres, L. A., Grillo, R., Swamy, M. K., & Sharma, S. (2018). Journal of Nanobiotechnology, 16, 1.

  110. Kumari, A., Yadav, S. K., & Yadav, S. C. (2010). Colloids and surfaces B: Biointerfaces, 75, 1.

    Article  Google Scholar 

  111. Hickey, J. W., Santos, J. L., Williford, J. M., & Mao, H. Q. (2015). Journal of Controlled Release, 219, 536.

    Article  Google Scholar 

  112. Zielińska, A., Carreiró, F., Oliveira, A. M., Neves, A., Pires, B., Venkatesh, D. N., Durazzo, A., Lucarini, M., Eder, P., Silva, A. M., Santini, A., & Souto, E. B. (2020). Molecules, 25, 3731.

  113. Lu, H., Zhang, S., Wang, J., & Chen, Q. (2021). Frontiers in Nutrition, 8, 783831.

    Article  Google Scholar 

  114. Amoyav, B., & Benny, O. (2018). Applied Nanoscience, 8, 905.

    Article  Google Scholar 

  115. Zielińska, A., Carreiró, F., Oliveira, A. M., Neves, A., Pires, B., Venkatesh, D. N., Durazzo, A., Lucarini, M., Eder, P., & Silva, A. M. (2020). Molecules, 25, 3731.

    Article  Google Scholar 

  116. Patel, T., Zhou, J., Piepmeier, J. M., & Saltzman, W. M. (2012). Advanced Drug Delivery Reviews, 64, 701.

  117. Giammona, G., & Craparo, E. F. (2019). Polymers, 11, 2066.

  118. Fessi, H., Puisieux, F., Devissaguet, J. P., Ammoury, N., & Benita, S. (1989). International Journal of Pharmaceutics, 55, R1.

  119. Kawaguchi, H. (2000). Progress in Polymer Science, 25, 1171.

  120. Prieto, S. A., Méndez, J. B., & Espinar, F. O. (2005). European Journal of Pharmaceutics and Biopharmaceutics, 59, 511.

  121. Quintanar-Guerrero, D., Allémann, E., Fessi, H., & Doelker, E. (1998). Drug Development and Industrial Pharmacy, 24, 1113.

  122. Liang, C., Prins, T. W., van de Wiel, C. C., & Kok, E. J. (2014). Trends in Food Science & Technology, 40, 115.

  123. Bawa, P., Pillay, V., Choonara, Y. E., & Du Toit, L. C. (2009). Biomedical Materials, 4, 022001.

  124. Sarmento, B., Ribeiro, A., Veiga, F., Sampaio, P., Neufeld, R., & Ferreira, D. (2007). Pharmaceutical Research, 24, 2198.

  125. Elmowafy, M., Shalaby, K., Elkomy, M. H., Alsaidan, O. A., Gomaa, H. A. M., Abdelgawad, M. A., & Mostafa, E. M. (2023). Polymers, 15, 1123.

  126. López Ruiz, A., Ramirez, A., & McEnnis, K. (2022). Pharmaceutics, 14, 421.

  127. Papagiannopoulos, A., & Vlassi, E. (2019). Food Hydrocolloids, 87, 602.

    Article  Google Scholar 

  128. Gerami, S. E., Pourmadadi, M., Fatoorehchi, H., Yazdian, F., Rashedi, H., & Nigjeh, M. N. (2021). International Journal of Biological Macromolecules, 173, 409.

    Article  Google Scholar 

  129. Wei, Y., Sun, C., Dai, L., Zhan, X., & Gao, Y. (2018). Food Hydrocolloids, 81, 149.

    Article  Google Scholar 

  130. Wei, Y., Zhou, D., Mackie, A., Yang, S., Dai, L., Zhang, L., Mao, L., & Gao, Y. (2021). Journal of Agricultural and Food Chemistry, 69, 1619.

    Article  Google Scholar 

  131. Lino, R. C., de Carvalho, S. M., Noronha, C. M., Sganzerla, W. G., da Rosa, C. G., Nunes, M. R., D’Avila, R. F., Zambiazi, R. C., & Barreto, P. L. M. (2022). Food Research International, 160, 111750.

    Article  Google Scholar 

  132. Majumdar, S., Mandal, T., & Mandal, D. D. (2022). International Journal of Biological Macromolecules, 195, 384.

    Article  Google Scholar 

  133. Liu, W.-Y., Hsieh, Y.-S., & Wu, Y.-T. (2022). Pharmaceutics, 14, 637.

    Article  Google Scholar 

  134. Zhong, L., Xu, J., Hu, Q., Zhan, Q., Ma, N., Zhao, M., & Zhao, L. (2024). International Journal of Biological Macromolecules, 263, 130298.

  135. Jain, A., Sharma, G., Kushwah, V., Ghoshal, G., Jain, A., Singh, B., Shivhare, U., Jain, S., & Katare, O. (2018). Artificial Cells, Nanomedicine, and Biotechnology, 46, 402.

  136. Lestari, A. D. N., Siswanta, D., Martien, R., & Mudasir, M. (2020). Indonesian Journal of Chemistry, 20, 929.

    Article  Google Scholar 

  137. Yi, J., Lam, T. I., Yokoyama, W., Cheng, L. W., & Zhong, F. (2014). Journal of Agricultural and Food Chemistry, 62, 8900.

  138. Afonso, B. S., Azevedo, A. G., Gonçalves, C., Amado, I. R., Ferreira, E. C., Pastrana, L. M., & Cerqueira, M. A. (2020). Molecules, 25, 4497.

    Article  Google Scholar 

  139. Miyazawa, T., Nakagawa, K., Harigae, T., Onuma, R., Kimura, F., Fujii, T., & Miyazawa, T. (2015). International Journal of Nanomedicine, 10, 7223.

  140. Coelho, L. M., Gonçalves, I., Ferreira, P., Pinheiro, A. C., Vicente, A. A., & Martins, J. T. (2022). Food Structure, 33, 100287.

    Article  Google Scholar 

  141. Azhar, F., Naureen, H., Shahnaz, G., Hamdani, S. D. A., Kiani, M. H., Khattak, S., Manna, M. K., Babar, M. M., Rajadas, J., & Rahdar, A. (2023). International Journal of Biological Macromolecules, 253, 126659.

    Article  Google Scholar 

  142. Hezaveh, H., & Muhamad, I. I. (2013). Chemical Engineering Research and Design, 91, 508.

    Article  Google Scholar 

  143. Chen, D., Zhao, C.-X., Lagoin, C., Hai, M., Arriaga, L. R., Koehler, S., Abbaspourrad, A., & Weitz, D. A. (2017). Royal Society Open Science, 4, 170919.

  144. Mejías, F. J., Gutiérrez, M. T., Durán, A. G., Molinillo, J. M., Valdivia, M. M., & Macías, F. A. (2019). Colloids and Surfaces B: Biointerfaces, 173, 85.

    Article  Google Scholar 

  145. Chen, K., Lei, L., Qian, Y., Yang, D., & Qiu, X. (2019). Food & Function, 10, 355.

  146. Selvakumar, S., Janakiraman, A. B., Michael, M. L., Jeyan Arthur, M., & Chinnaswamy, A. (2019). Journal of Food Processing and Preservation, 43, e14212.

  147. Jain, A., Sharma, G., Thakur, K., Raza, K., Shivhare, U., Ghoshal, G., & Katare, O. P. (2019). An Official Journal of the American Association of Pharmaceutical Scientists, 20, 1.

    Google Scholar 

  148. Trombino, S., Cassano, R., Muzzalupo, R., Pingitore, A., Cione, E., & Picci, N. (2009). Colloids and Surfaces B: Biointerfaces, 72, 181.

    Article  Google Scholar 

  149. Lacatusu, I., Badea, N., Ovidiu, O., Bojin, D., & Meghea, A. (2012). Journal of Nanoparticle Research, 14, 1.

    Article  Google Scholar 

  150. Hu, C., & Zhang, W. (2022). Innovative Food Science & Emerging Technologies, 77, 102980.

    Article  Google Scholar 

  151. Falsafi, S. R., Rostamabadi, H., Nishinari, K., Amani, R., & Jafari, S. M. (2022). Food Chemistry, 374, 131826.

    Article  Google Scholar 

  152. Gomes, A., Costa, A.L.R., do Amaral Sobral, P.J., Cunha, R.L. (2023). Food Hydrocolloids for Health, 3 100125

  153. Mohan, K., Makebe, C. W., Jayamurthy, P., & Nisha, P. (2022). Journal of Food Processing and Preservation, 46, e16930.

    Article  Google Scholar 

  154. Liu, Z., Sun, X., Nakayama-Ratchford, N., & Dai, H. (2007). ACS Nano, 1, 50.

    Article  Google Scholar 

  155. Chow, E. K., Zhang, X.-Q., Chen, M., Lam, R., Robinson, E., Huang, H., Schaffer, D., Osawa, E., Goga, A., & Ho, D. (2011). Science Translational Medicine, 3, 73ra21.

  156. Dai, H. (2002). Accounts of Chemical Research, 35, 1035.

  157. De Volder, M. F., Tawfick, S. H., Baughman, R. H., & Hart, A. J. (2013). Science, 339, 535.

    Article  Google Scholar 

  158. Thanuja, M., Anupama, C., & Ranganath, S. H. (2018). Advanced Drug Delivery Reviews, 132, 57.

  159. Manley, S., Gunzenhäuser, J., & Olivier, N. (2011). Current Opinion in Chemical Biology, 15, 813.

  160. Pop, E., Varshney, V., & Roy, A. K. (2012). MRS bulletin, 37, 1273.

    Article  Google Scholar 

  161. Georgakilas, V., Otyepka, M., Bourlinos, A. B., Chandra, V., Kim, N., Kemp, K. C., Hobza, P., Zboril, R., & Kim, K. S. (2012). Chemical Reviews, 112, 6156.

    Article  Google Scholar 

  162. Allen, B. L., Kichambare, P. D., & Star, A. (2007). Advanced Materials, 19, 1439.

    Article  Google Scholar 

  163. Liu, Z., Chen, K., Davis, C., Sherlock, S., Cao, Q., Chen, X., & Dai, H. (2008). Cancer Research, 68, 6652.

  164. Boehler, R., Shin, S., Fast, A., Gower, R. M., & Shea, L. (2013). Biomaterials, 34, 5431.

    Article  Google Scholar 

  165. Bianco, A., Kostarelos, K., & Prato, M. (2005). Current Opinion in Chemical Biology, 9, 674.

  166. Al-Jamal, W. T., & Kostarelos, K. (2011). Accounts of Chemical Research, 44, 1094.

  167. Lim, D.-J., Sim, M., Oh, L., Lim, K., & Park, H. (2014). Archives of Pharmacal Research, 37, 43.

    Article  Google Scholar 

  168. Mehdipour, G., Shabani Shayeh, J., Omidi, M., Pour Madadi, M., Yazdian, F., & Tayebi, L. (2021). Biotechnology and Applied Biochemistry, 69, 2102.

  169. Kazemi, S., Pourmadadi, M., Yazdian, F., & Ghadami, A. (2021). International Journal of Biological Macromolecules, 186, 554.

    Article  Google Scholar 

  170. Yanagi, K., Miyata, Y., & Kataura, H. (2006). Advanced Materials, 18, 437.

    Article  Google Scholar 

  171. Latief, U., Umar, M. F., & Ahmad, R. (2019). International Journal of Biological Macromolecules, 137, 346.

  172. Radtke, M., & Müller, R. (1991). Pharmaceutical Technology Europe, 17, 1.

    Google Scholar 

  173. Mehnert, W., & Mäder, K. (2012). Advanced Drug Delivery Reviews, 64, 83.

  174. Sjöström, B., & Bergenståhl, B. (1992). International Journal of Pharmaceutics, 88, 53.

  175. Orlu, M., Cevher, E., & Araman, A. (2006). International Journal of Pharmaceutics, 318, 103.

  176. Jores, K., Mehnert, W., Drechsler, M., Bunjes, H., Johann, C., & Mäder, K. (2004). Journal of Controlled Release, 95, 217.

    Article  Google Scholar 

  177. Gaspar, M. M., Blanco, D., Cruz, M. E. M., & Alonso, M. J. (1998). Journal of Controlled Release, 52, 53.

  178. Mao, L., Wang, D., Liu, F., & Gao, Y. (2018). Critical Reviews in Food Science and Nutrition, 58, 770.

    Article  Google Scholar 

  179. Satapathy, M. K., Yen, T. L., Jan, J. S., Tang, R. D., Wang, J. Y., Taliyan, R., & Yang, C. H. (2021). Pharmaceutics, 13, 1183.

  180. Elmowafy, M., & Al-Sanea, M. M. (2021). Saudi Pharmaceutical Journal, 29, 999.

  181. Heurtault, B., Saulnier, P., Pech, B., Proust, J. E., & Benoit, J. P. (2003). Biomaterials, 24, 4283.

    Article  Google Scholar 

  182. Müller, R., Radtke, M., & Wissing, S. (2002). International Journal of Pharmaceutics, 242, 121.

  183. Üner, M., & Yener, G. (2007). International Journal of Nanomedicine, 2, 289.

  184. Souto, E., & Müller, R. (2005). Journal of Microencapsulation, 22, 501.

  185. Masuku, N. P., Unuofin, J. O., & Lebelo, S. L. (2020). Biomedicine & Pharmacotherapy, 130, 110555.

    Article  Google Scholar 

  186. Chen, J., Sun, J., Chi, M., & Cheng, X.-M. (2014). Abstract and Applied Analysis. Hindawi, 2014, 675840.

  187. Esposito, E., Cortesi, R., Drechsler, M., Paccamiccio, L., Mariani, P., Contado, C., Stellin, E., Menegatti, E., Bonina, F., & Puglia, C. (2005). Pharmaceutical Research, 22, 2163.

  188. Zhu, Y., Mullen, A. M., Rai, D. K., Kelly, A. L., Sheehan, D., Cafferky, J., & Hamill, R. M. (2019). Foods, 8, 60.

    Article  Google Scholar 

  189. Muchow, M., Maincent, P., & Müller, R. H. (2008). Drug Development and Industrial Pharmacy, 34, 1394.

  190. Miki, R., Yamaki, T., Uchida, M., & Natsume, H. (2022). Colloids and Surface A, 648, 129418.

  191. Pezeshki, A., Hamishehkar, H., Ghanbarzadeh, B., Fathollahy, I., Keivani Nahr, F., Khakbaz Heshmati, M., & Mohammadi, M. (2019). Food Bioscience, 27, 11.

  192. de Castro Reis, L. V., Leão, K. M., Speranza, P., Ribeiro, A. P. B., Macedo, G. A., & Macedo, J. A. (2020). Food Science and Biotechnology, 58, 284.

  193. Babazadeh, A., Ghanbarzadeh, B., & Hamishehkar, H. (2017). Journal of Drug Delivery Science and Technology, 39, 50.

    Article  Google Scholar 

  194. Poonia, N., Kharb, R., Lather, V., & Pandita, D. (2016). Future Science OA, 2, Fso135.

  195. Gomes, G. V.d. L., Sola, M. R., Rochetti, A. L., Fukumasu, H., Vicente, A., & Pinho, S. C.d. (2019). Journal of Microencapsulation, 36, 43.

  196. Hamadou, A. H., Huang, W.-C., Xue, C., & Mao, X. (2020). Journal of Food Engineering, 283, 110055.

    Article  Google Scholar 

  197. Borba, C. M., Tavares, M. N., Macedo, L. P., Araújo, G. S., Furlong, E. B., Dora, C. L., & Burkert, J. F. (2019). Food Research International, 121, 229.

    Article  Google Scholar 

  198. Li, R., Tan, Y., Dai, T., Zhang, R., Fu, G., Wan, Y., Liu, C., & McClements, D. J. (2019). Food & Function, 10, 7239.

  199. Mozafarpour, R., & Koocheki, A. (2023). LWT, 184, 115020.

    Article  Google Scholar 

  200. Liu, X., Xie, F., Zhou, J., He, J., Din, Z.-U., Cheng, S., & Cai, J. (2023). Food Hydrocolloids, 142, 108762.

    Article  Google Scholar 

  201. Gasa-Falcon, A., Arranz, E., Odriozola-Serrano, I., Martín-Belloso, O., & Giblin, L. (2021). Lwt, 135, 110059.

    Article  Google Scholar 

  202. Mehrad, B., Ravanfar, R., Licker, J., Regenstein, J. M., & Abbaspourrad, A. (2018). Food Research International, 105, 962.

  203. Torchilin, V. P. (1996). Molecular Medicine Today, 2, 242.

    Article  Google Scholar 

  204. Gaucher, G., Dufresne, M.-H., Sant, V. P., Kang, N., Maysinger, D., & Leroux, J.-C. (2005). Journal of Controlled Release, 109, 169.

  205. Woolfrey, S., Hegbrant, J., Thysell, H., Fox, P., Lendrem, D., Lockwood, G., Lasher, K., Rogers, J., & Greenslade, D. (1995). Journal of Pharmacy and Pharmacology, 47, 651.

  206. Vauthier, C., & Bouchemal, K. (2009). Pharmaceutical Research, 26, 1025.

  207. Bayda, S., Hadla, M., Palazzolo, S., Riello, P., Corona, G., Toffoli, G., & Rizzolio, F. (2018). Current Medicinal Chemistry, 25, 4269.

    Article  Google Scholar 

  208. Saptarshi, S. R., Duschl, A., & Lopata, A. L. (2013). Journal of Nanobiotechnology, 11, 1.

  209. Chen, X., & Schluesener, H. J. (2008). Toxicology Letters, 176, 1.

  210. Conde, J., Doria, G., & Baptista, P. (2012). Journal of Drug Delivery, 2012, 751075.

  211. Mody, V. V., Cox, A., Shah, S., Singh, A., Bevins, W., & Parihar, H. (2014). Applied Nanoscience, 4, 385.

    Article  Google Scholar 

  212. Xia, Y., Xiong, Y., Lim, B., & Skrabalak, S. E. (2009). Angewandte Chemie International Edition, 48, 60.

    Article  Google Scholar 

  213. Daniel, M.-C., & Astruc, D. (2004). Chemical Reviews, 104, 293.

    Article  Google Scholar 

  214. El-Sayed, M. A. (2001). Accounts of Chemical Research, 34, 257.

  215. Haruta, M. (2003). The Chemical Record, 3, 75.

  216. Cortie, M. B., & McDonagh, A. M. (2011). Chemical Reviews, 111, 3713.

    Article  Google Scholar 

  217. Surve, D.H., Paul, A.T., Jindal, A.B. (2019). Environmental Nanotechnology, Springer, p. 63–107

  218. Dinani, H. S., Pourmadadi, M., Yazdian, F., Rashedi, H., Ebrahimi, S. A. S., Shayeh, J. S., & Ghorbani, M. (2022). Engineering in Life Sciences, 22, 519.

  219. Aayanifard, Z., Alebrahim, T., Pourmadadi, M., Yazdian, F., Dinani, H. S., Rashedi, H., & Omidi, M. (2021). Engineering in Life Sciences, 21, 739.

  220. Monteiro, F. F., Azevedo, D. L., da Silva, E. C., Ribeiro Jr, L. A., & de Almeida Fonseca, A. L. (2015). Chemical Physics Letters, 636, 62.

  221. Kohno, Y., Kato, Y., Shibata, M., Fukuhara, C., Maeda, Y., Tomita, Y., & Kobayashi, K. (2016). Microporous and Mesoporous Materials, 220, 1.

    Article  Google Scholar 

  222. Martínez, J., Espericueta, D., Guerrero-Serrano, G., Ortega-Zarzosa, G., Espericueta, E., & Guerrero, A. L. (2020). Materials Research Express, 7, 015205.

    Google Scholar 

  223. González-García, Y., Cárdenas-Álvarez, C., Cadenas-Pliego, G., Benavides-Mendoza, A., Cabrera-de-la-Fuente, M., Sandoval-Rangel, A., Valdés-Reyna, J., & Juárez-Maldonado, A. (2021). Plants, 10, 217.

    Article  Google Scholar 

  224. Sayehi, M., Hajji, S., Boudjema, L., Kazemian, H., Nasri, M., & Tounsi, H. (2022). Inorganic Chemistry Communications, 140, 109415.

    Article  Google Scholar 

  225. Lee, S., Sugimoto, Y., Kato, K., Miyajima, T., Sakurai, M., & Nagata, F. (2022). Journal of Asian Ceramic Societies, 10, 744.

    Article  Google Scholar 

  226. Gimenez-Rota, C., Palazzo, I., Scognamiglio, M., Mainar, A., Reverchon, E., & Della Porta, G. (2019). The Journal of Supercritical Fluids, 146, 199.

  227. Liu, X., Wang, P., Zou, Y.-X., Luo, Z.-G., & Tamer, T. M. (2020). Food Research International, 136, 109587.

    Article  Google Scholar 

  228. Wei, Y., Wang, C., Liu, X., Mackie, A., Zhang, M., Dai, L., Liu, J., Mao, L., Yuan, F., & Gao, Y. (2022). Food Hydrocolloids, 122, 107064.

    Article  Google Scholar 

  229. Jain, A., Sharma, G., Kushwah, V., Garg, N. K., Kesharwani, P., Ghoshal, G., Singh, B., Shivhare, U. S., Jain, S., & Katare, O. P. (2017). Nanomedicine, 12, 1851.

    Article  Google Scholar 

  230. Wu, Z., Tang, X., Liu, S., Li, S., Zhao, X., Wang, Y., Wang, X., & Li, H. (2023). Food Research International, 172, 113136.

  231. Ji, Y., Wang, Z., Ju, X., Deng, F., Yang, F., & He, R. (2023). Journal of Food Science, 88, 2064.

  232. Carotenuto, P., Pecoraro, A., Brignola, C., Barbato, A., Franco, B., Longobardi, G., Conte, C., Quaglia, F., Russo, G., & Russo, A. (2023). Molecular Pharmaceutics, 20, 2326.

    Article  Google Scholar 

  233. Xu, Z., Zhang, X., Wu, X., Ma, D., Huang, Y., Zhao, Q., Zhang, S., & Li, Y. (2024). International. Journal of Biological Macromolecules, 261, 129855.

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.P.: Methodology, Formal analysis, Writing - Original Draft. H.A.: Formal analysis, Validation. M.A.: Validation, Writing - Review & Editing, Supervision. A.R.: Data Curation ,Writing - Review & Editing. S.P.: Conceptualization, Writing - Review & Editing. All authors reviewed the manuscript

Corresponding authors

Correspondence to Majid Abdouss, Abbas Rahdar or Sadanand Pandey.

Ethics declarations

Ethical Approval

Not Applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourmadadi, M., Ahmadi, H., Abdouss, M. et al. Tiny Carriers, Big Impact: A Review of Nanomaterial Systems for β-Carotene Bioavailability. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01374-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01374-4

Keywords

Navigation