Skip to main content
Log in

Realization of vertical and lateral van der Waals heterojunctions using two-dimensional layered organic semiconductors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Van der Waals (vdW) heterojunctions based on two-dimensional (2D) atomic crystals have been extensively studied in recent years. Herein, we show that both vertical and lateral vdW heterojunctions can be realized with layered molecular crystals using a two-step physical vapor transport (PVT) process. Both types of heterojunctions show clean and sharp interfaces without phase mixing under atomic force microscopy (AFM). They also exhibit a strong interfacial built-in electric field similar to that of their inorganic counterparts. These heterojunctions have greater potential for device applications than individual materials. The lateral heterojunction (LHJ) devices show rectifying characteristics due to the asymmetric energy barrier for holes at the interface, while the vertical heterojunction (VHJ) devices behave like metal–insulator–semiconductor tunnel junctions, with pronounced negative differential conductance (NDC). Our work extends the concept of vdW heterojunctions to molecular materials, which can be generalized to other layered organic semiconductors (OSCs) to obtain new device functionalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kroemer, H. A proposed class of hetero-junction injection lasers. Proc. IEEE 1963, 51, 1782-1783.

    Article  Google Scholar 

  2. Taniyasu, Y.; Kasu, M.; Makimoto, T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 2006, 441, 325–328.

    Article  Google Scholar 

  3. Cho, A. Y.; Arthur, J. R. Prog. Molecular beam epitaxy. Prog. Solid State Chem. 1975, 10, 157–191.

    Article  Google Scholar 

  4. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of twodimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  Google Scholar 

  5. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Twodimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

    Article  Google Scholar 

  6. Zhang, W. X.; Huang, Z. S.; Zhang, W. L.; Li, Y. R. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 2014, 7, 1731–1737.

    Article  Google Scholar 

  7. Tian, H.; Chin, M. L.; Najmaei, S.; Guo, Q. S.; Xia, F. N.; Wang, H.; Dubey, M. Optoelectronic devices based on twodimensional transition metal dichalcogenides. Nano Res. 2016, 9, 1543–1560.

    Article  Google Scholar 

  8. Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

    Article  Google Scholar 

  9. Lou, Z.; Liang, Z. Z.; Shen, G. Z. Photodetectors based on two dimensional materials. J. Semicond. 2016, 37, 091001.

    Article  Google Scholar 

  10. Geim, A. K.; Grigorieva, I. V. Van der waals heterostructures. Nature 2013, 499, 419–425.

    Article  Google Scholar 

  11. Hong, X. P.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682–686.

    Article  Google Scholar 

  12. Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y.-J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311–1314.

    Article  Google Scholar 

  13. Zhao, M.; Zhang, W. T.; Liu, M. M.; Zou, C.; Yang, K. Q.; Yang, Y.; Dong, Y. Q.; Zhang, L. J.; Huang, S. M. Interlayer coupling in anisotropic/isotropic van der Waals heterostructures of ReS2 and MoS2 monolayers. Nano Res. 2016, 9, 3772–3780.

    Article  Google Scholar 

  14. Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A. P.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S. J.; Geim, A. K.; Tartakovskii, A. I. et al. Lightemitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 2015, 14, 301–306.

    Article  Google Scholar 

  15. Chen, C.-C.; Li, Z.; Shi, L.; Cronin, S. B. Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures. Nano Res. 2015, 8, 666–672.

    Article  Google Scholar 

  16. Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142.

    Article  Google Scholar 

  17. Duan, X. D.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H. L.; Wu, X. P.; Tang, Y.; Zhang, Q. L.; Pan, A. L. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9, 1024–1030.

    Article  Google Scholar 

  18. Chen, K.; Wan, X.; Xie, W. G.; Wen, J. X.; Kang, Z. W.; Zeng, X. L.; Chen, H. J.; Xu, J. B. Lateral built-in potential of monolayer MoS2-WS2 in-plane heterostructures by a shortcut growth strategy. Adv. Mater. 2015, 27, 6431–6437.

    Article  Google Scholar 

  19. Chen, K.; Wan, X.; Wen, J. X.; Xie, W. G.; Kang, Z. W.; Zeng, X. L.; Chen, H. J.; Xu, J. B. Electronic properties of MoS2-WS2 heterostructures synthesized with two-step lateral epitaxial strategy. ACS Nano 2015, 9, 9868–9876.

    Article  Google Scholar 

  20. Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 2012, 335, 947–950.

    Article  Google Scholar 

  21. Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotechnol. 2014, 9, 268–272.

    Article  Google Scholar 

  22. Britnell, L.; Gorbachev, R. V.; Geim, A. K.; Ponomarenko, L. A.; Mishchenko, A.; Greenaway, M. T.; Fromhold, T. M.; Novoselov, K. S.; Eaves, L. Resonant tunnelling and negative differential conductance in graphene transistors. Nat. Commun. 2013, 4, 1794.

    Article  Google Scholar 

  23. Furchi, M. M.; Pospischil, A.; Libisch, F.; Burgdorfer, J.; Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 2014, 14, 4785–4791.

    Article  Google Scholar 

  24. Xia, C. X.; Li, J. B. Recent advances in optoelectronic properties and applications of two-dimensional metal chalcogenides. J. Semicond. 2016, 37, 051001.

    Article  Google Scholar 

  25. Yu, W. J.; Liu, Y.; Zhou, H. L.; Yin, A. X.; Li, Z.; Huang, Y.; Duan, X. F. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 2013, 8, 952–958.

    Article  Google Scholar 

  26. Wang, X. T.; Huang, L.; Peng, Y. T.; Huo, N. J.; Wu, K. D.; Xia, C. X.; Wei, Z. M.; Tongay, S.; Li, J. B. Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions. Nano Res. 2016, 9, 507–516.

    Article  Google Scholar 

  27. Forrest, S. R. Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chem. Rev. 1997, 97, 1793–1896.

    Article  Google Scholar 

  28. Heeger, A. J. 25th anniversary article: Bulk heterojunction solar cells: Understanding the mechanism of operation. Adv. Mater. 2014, 26, 10–28.

    Article  Google Scholar 

  29. Peumans, P.; Uchida, S.; Forrest, S. R. Efficient bulk heterojunction photovoltaic cells using small-molecularweight organic thin films. Nature 2003, 425, 158–162.

    Article  Google Scholar 

  30. Huang, Y.; Kramer, E. J.; Heeger, A. J.; Bazan, G. C. Bulk heterojunction solar cells: Morphology and performance relationships. Chem. Rev. 2014, 114, 7006-7043.

    Article  Google Scholar 

  31. Marathe, D. M.; Tarkas, H. S.; Mahajan, M. S.; Lonkar, G. S.; Tak, S. R.; Sali, J. V. Bulk heterojunction thin film formation by single and dual feed ultrasonic spray method for application in organic solar cells. J Semicond. 2016, 37, 093003.

    Article  Google Scholar 

  32. He, D. W.; Zhang, Y. H.; Wu, Q. S.; Xu, R.; Nan, H. Y.; Liu, J. F.; Yao, J. J.; Wang, Z. L.; Yuan, S. J.; Li, Y. et al. Two-dimensional quasi-freestanding molecular crystals for high-performance organic field-effect transistors. Nat. Commun. 2014, 5, 5162.

    Article  Google Scholar 

  33. He, D. W.; Pan, Y. M.; Nan, H. Y.; Gu, S.; Yang, Z. Y.; Wu, B.; Luo, X. G.; Xu, B. C.; Zhang, Y. H.; Li, Y. et al. A van der Waals p–n heterojunction with organic/inorganic semiconductors. Appl. Phys. Lett. 2015, 107, 183103.

    Article  Google Scholar 

  34. Zhang, Y. H.; Qiao, J. S.; Gao, S.; Hu, F. R.; He, D. W.; Wu, B.; Yang, Z. Y.; Xu, B.; Li, Y.; Shi, Y. et al. Probing carrier transport and structure-property relationship of highly ordered organic semiconductors at the two-dimensional limit. Phys. Rev. Lett. 2016, 116, 016602.

    Article  Google Scholar 

  35. Wu, B.; Zhao, Y. H.; Nan, H. Y.; Yang, Z. Y.; Zhang, Y. H.; Zhao, H. J.; He, D. W.; Jiang, Z. L.; Liu, X. L.; Li, Y. et al. Precise, self-limited epitaxy of ultrathin organic semiconductors and heterojunctions tailored by van der Waals interactions. Nano Lett. 2016, 16, 3754–3759.

    Article  Google Scholar 

  36. Liu, X. L.; Luo, X. G.; Nan, H. Y.; Guo, H.; Wang, P.; Zhang, L. L.; Zhou, M. M.; Yang, Z. Y.; Shi, Y.; Hu, W. D. et al. Epitaxial ultrathin organic crystals on graphene for high-efficiency phototransistors. Adv. Mater. 2016, 28, 5200–5205.

    Article  Google Scholar 

  37. Xu, C. H.; He, P.; Liu, J.; Cui, A. J.; Dong, H. L.; Zhen, Y. G.; Chen, W.; Hu, W. P. A general method for growing two-dimensional crystals of organic semiconductors by “solution epitaxy”. Angew. Chem., Int. Ed. 2016, 55, 9519–9523.

    Article  Google Scholar 

  38. Wang, Q. J.; Qian, J.; Li, Y.; Zhang, Y. H.; He, D. W.; Jiang, S.; Wang, Y.; Wang, X. R.; Pan, L. J.; Wang, J. Z. et al. 2D single-crystalline molecular semiconductors with precise layer definition achieved by floating-coffee-ring-driven assembly. Adv. Funct. Mater. 2016, 26, 3191–3198.

    Google Scholar 

  39. Jiang, L.; Dong, H. L.; Meng, Q.; Li, H. X.; He, M.; Wei, Z. M.; He, Y. D.; Hu, W. P. Millimeter-sized molecular monolayer two-dimensional crystals. Adv. Mater. 2011, 23, 2059–2063.

    Article  Google Scholar 

  40. Mannsfeld, S. C. B.; Virkar, A.; Reese, C.; Toney, M. F.; Bao, Z. Precise structure of pentacene monolayers on amorphous silicon oxide and relation to charge transport. Adv. Mater. 2009, 21, 2294–2298.

    Article  Google Scholar 

  41. Minemawari, H.; Yamada, T.; Matsui, H.; Tsutsumi, J.; Haas, S.; Chiba, R.; Kumai, R.; Hasegawa, T. Inkjet printing of single-crystal films. Nature 2011, 475, 364–367.

    Article  Google Scholar 

  42. Li, M. Y.; Shi, Y. M.; Cheng, C. C.; Lu, L. S.; Lin, Y. C.; Tang, H. L.; Tsai, M. L.; Chu, C. W.; Wei, K. H.; He, J. H. et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p–n junction with an atomically sharp interface. Science 2015, 349, 524–528.

    Article  Google Scholar 

  43. Kobayashi, H.; Kobayashi, N.; Hosoi, S.; Koshitani, N.; Murakami, D.; Shirasawa, R.; Kudo, Y.; Hobara, D.; Tokita, Y.; Itabashi, M. Hopping and band mobilities of pentacene, rubrene, and 2,7-dioctylai][1]benzothieno[3,2-b][1] benzothiophene (C8-btbt) from first principle calculations. J. Chem. Phys. 2013, 139, 014707.

    Article  Google Scholar 

  44. Jang, S.; Hwang, E.; Lee, Y.; Lee, S.; Cho, J. H. Multifunctional graphene optoelectronic devices capable of detecting and storing photonic signals. Nano Lett. 2015, 15, 2542–2547.

    Article  Google Scholar 

  45. Kane, E. O. Theory of tunneling. J. Appl. Phys. 1961, 32, 83–91.

    Article  Google Scholar 

  46. Yan, R. S.; Fathipour, S.; Han, Y. M.; Song, B.; Xiao, S. D.; Li, M. D.; Ma, N.; Protasenko, V.; Muller, D. A.; Jena, D. et al. Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment. Nano Lett. 2015, 15, 5791–5798.

    Article  Google Scholar 

  47. Esaki, L. New phenomenon in narrow germanium p-n junctions. Phys. Rev. 1958, 109, 603–604.

    Article  Google Scholar 

  48. Esaki, L. Long journey into tunneling. Rev. Mod. Phys. 1974, 46, 237–244.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Basic Research Program of China (Nos. 2013CBA01604 and 2015CB921600), National Natural Science Foundation of China (Nos. 61325020, 61261160499, 11274154, and 61521001), Research Grant Council of Hong Kong (No. SARN_CUHK405/12), Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, “Jiangsu Shuangchuang” program and “Jiangsu Shuangchuang Team” Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Shi or Xinran Wang.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Luo, Z., Hu, F. et al. Realization of vertical and lateral van der Waals heterojunctions using two-dimensional layered organic semiconductors. Nano Res. 10, 1336–1344 (2017). https://doi.org/10.1007/s12274-017-1442-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1442-5

Keywords

Navigation