Skip to main content
Log in

Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Bi is a promising candidate for energy storage materials because of its high volumetric capacity, stability in moisture/air, and facile preparation. In this study, the electrochemical performance of nanosized-Bi-embedded one-dimensional (1D) carbon nanofibers (Bi/C nanofibers) as anodes for Li-ion batteries (LIBs) and Na-ion batteries (NIBs) was systematically investigated. The Bi/C nanofibers were prepared using a single-nozzle electrospinning method with a specified Bi source followed by carbothermal reduction. Abundant Bi nanoparticles with diameters of approximately 20 nm were homogeneously dispersed and embedded in the 1D carbon nanofibers, as confirmed by structural and morphological characterization. Electrochemical measurements indicate that the Bi/C nanofiber anodes could deliver a long cycle life for LIBs and a preferable rate performance for NIBs. The superior electrochemical performances of the Bi/C nanofiber anodes are attributed to the 1D carbon nanofiber structure and uniform distribution of Bi nanoparticles embedded in the carbon matrix. This unique embedded structure provides a favorable electron carrier and buffering matrix for the effective release of mechanical stress caused by volume change and prevents the aggregation of Bi nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whittingham, M. S. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 2014, 114, 11414–11443.

    Article  Google Scholar 

  2. Roberts, A. D.; Li, X.; Zhang, H. F. Porous carbon spheres and monoliths: Morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem. Soc. Rev. 2014, 43, 4341–4356.

    Article  Google Scholar 

  3. Mai, L. Q.; Tian, X. C.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 2014, 114, 11828–11862.

    Article  Google Scholar 

  4. Ellis, B. L.; Nazar, L. F. Sodium and sodium-ion energy storage batteries. Curr. Opin. Solid State Mater. Sci. 2012, 16, 168–177.

    Article  Google Scholar 

  5. Okuyama, R.; Nakashima, H.; Sano, T.; Nomura, E. The effect of metal sulfides in the cathode on Na/S battery performance. J. Power Sources 2001, 93, 50–54.

    Article  Google Scholar 

  6. Khan, Y.; Ostfeld, A. E.; Lochner, C. M.; Pierre, A.; Arias, A. C. Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 2016, 28, 4373–4395.

    Article  Google Scholar 

  7. Ma, J.; Hu, P.; Cui, G. L.; Chen, L. Q. Surface and interface issues in spinel LiNi0.5Mn1.5O4: Insights into a potential cathode material for high energy density lithium ion batteries. Chem. Mater. 2016, 28, 3578–3606.

    Article  Google Scholar 

  8. Xiang, X. D.; Zhang, K.; Chen, J. Recent advances and prospects of cathode materials for sodium-ion batteries. Adv. Mater. 2015, 27, 5343–5364.

    Article  Google Scholar 

  9. Cao, Y. L.; Xiao, L. F.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z. M.; Saraf, L. V.; Yang, Z. G.; Liu, J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012, 12, 3783–3787.

    Article  Google Scholar 

  10. Tang, K.; Fu, L. J.; White, R. J.; Yu, L. H.; Titirici, M.-M.; Antonietti, M.; Maier, J. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv. Energy Mater. 2012, 2, 873–877.

    Article  Google Scholar 

  11. Goodenough, J. B.; Singh, P. Review—Solid electrolytes in rechargeable electrochemical cells. J. Electrochem. Soc. 2015, 162, A2387–A2392.

  12. Palomares, V.; Casas-Cabanas, M.; Castillo-Martí nez, E.; Han, M. H.; Rojo, T. Update on Na-based battery materials. A growing research path. Energy Environ. Sci. 2013, 6, 2312–2337.

    Google Scholar 

  13. Song, J. X.; Yu, Z. X.; Gordin, M. L.; Li, X. L.; Peng, H. S.; Wang, D. H. Advanced sodium ion battery anode constructed via chemical bonding between phosphorus, carbon nanotube, and cross-linked polymer binder. ACS Nano 2015, 9, 11933–11941.

    Article  Google Scholar 

  14. Wu, C.; Kopold, P.; Ding, Y.-L.; van Aken, P. A.; Maier, J.; Yu, Y. Synthesizing porous NaTi2(PO4)3 nanoparticles embedded in 3D graphene networks for high-rate and long cycle-life sodium electrodes. ACS Nano 2015, 9, 6610–6618.

    Article  Google Scholar 

  15. Sun, X.; Ji, X.-Y.; Xu, H.-Y.; Zhang, C.-Y.; Shao, Y.; Zang, Y.; Chen, C.-H. Sodium insertion cathode material Na0.67[Ni0.4Co0.2Mn0.4]O2 with excellent electrochemical properties. Electrochim. Acta 2016, 208, 142–147.

    Article  Google Scholar 

  16. Alcántara, R.; Jiménez-Mateos, J. M.; Lavela, P.; Tirado, J. L. Carbon black: A promising electrode material for sodium-ion batteries. Electrochem. Commun. 2001, 3, 639–642.

    Article  Google Scholar 

  17. Thomas, P.; Ghanbaja, J.; Billaud, D. Electrochemical insertion of sodium in pitch-based carbon fibres in comparison with graphite in NaClO4-ethylene carbonate electrolyte. Electrochim. Acta 1999, 45, 423–430.

    Article  Google Scholar 

  18. Ponrouch, A.; Goñi, A. R.; Palacín, M. R. High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte. Electrochem. Commun. 2013, 27, 85–88.

    Article  Google Scholar 

  19. Thomas, P.; Billaud, D. Electrochemical insertion of sodium into hard carbons. Electrochim. Acta 2002, 47, 3303–3307.

    Article  Google Scholar 

  20. Wenzel, S.; Hara, T.; Janek, J.; Adelhelm, P. Roomtemperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies. Energy Environ. Sci. 2011, 4, 3342–3345.

    Article  Google Scholar 

  21. Xu, Y. H.; Zhu, Y. J.; Liu, Y. H.; Wang, C. S. Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv. Energy Mater. 2013, 3, 128–133.

    Article  Google Scholar 

  22. Wang, H. G.; Yuan, S.; Ma, D. L.; Zhang, X. B.; Yan, J. M. Electrospun materials for lithium and sodium rechargeable batteries: From structure evolution to electrochemical performance. Energy Environ. Sci. 2015, 8, 1660–1681.

    Article  Google Scholar 

  23. Li, W. J.; Chou, S.-L.; Wang, J.-Z.; Kim, J. H.; Liu, H.-K.; Dou, S.-X. Sn4+xP3@amorphous Sn-P composites as anodes for sodium-ion batteries with low cost, high capacity, long life, and superior rate capability. Adv. Mater. 2014, 26, 4037–4042.

    Article  Google Scholar 

  24. Liu, Y. C.; Zhang, N.; Jiao, L. F.; Tao, Z. L.; Chen, J. Ultrasmall Sn nanoparticles embedded in carbon as highperformance anode for sodium-ion batteries. Adv. Funct. Mater. 2015, 25, 214–220.

    Article  Google Scholar 

  25. Kim, C.; Gwon, O.; Jeon, I. Y.; Kim, Y.; Shin, J.; Ju, Y. W.; Baek, J. B.; Kim, G. Cloud-like graphene nanoplatelets on Nd0.5Sr0.5CoO3-d nanorods as an efficient bifunctional electrocatalyst for hybrid Li-air batteries. J. Mater. Chem. A 2016, 4, 2122–2127.

    Article  Google Scholar 

  26. Zhang, K.; Hu, Z.; Liu, X.; Tao, Z. L.; Chen, J. FeSe2 microspheres as a high-performance anode material for Na-ion batteries. Adv. Mater. 2015, 27, 3305–3309.

    Article  Google Scholar 

  27. Datta, M. K.; Epur, R.; Saha, P.; Kadakia, K.; Park, S. K.; Kumta, P. N. Tin and graphite based nanocomposites: Potential anode for sodium ion batteries. J. Power Sources 2013, 225, 316–322.

    Article  Google Scholar 

  28. Mortazavi, M.; Deng, J.; Shenoy, V. B.; Medhekar, N. V. Elastic softening of alloy negative electrodes for Na-ion batteries. J. Power Sources 2013, 225, 207–214.

    Article  Google Scholar 

  29. Xiao, L. F.; Cao, Y. L.; Xiao, J.; Wang, W.; Kovarik, L.; Nie, Z. M.; Liu, J. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem. Commun. 2012, 48, 3321–3323.

    Article  Google Scholar 

  30. He, M.; Walter, M.; Kravchyk, K. V.; Erni, R.; Widmer, R.; Kovalenko, M. V. Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: Synergy and dissonance between Sn and Sb. Nanoscale 2015, 7, 455–459.

    Article  Google Scholar 

  31. Qu, B. H.; Ma, C. Z.; Ji, G.; Xu, C. H.; Xu, J.; Meng, Y. S.; Wang, T. H.; Lee, J. Y. Layered SnS2-reduced graphene oxide composite—A high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 2014, 26, 3854–3859.

    Article  Google Scholar 

  32. Qian, J. F.; Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew. Chem., Int. Ed. 2013, 52, 4633–4636.

    Article  Google Scholar 

  33. Yan, D.; Yu, C. Y.; Bai, Y.; Zhang, W. F.; Chen, T. Q.; Hu, B. W.; Sun, Z.; Pan, L. K. Sn-doped TiO2 nanotubes as superior anode materials for sodium ion batteries. Chem. Commun. 2015, 51, 8261–8264.

    Article  Google Scholar 

  34. Wu, L.; Hu, X. H.; Qian, J. F.; Pei, F.; Wu, F. Y.; Mao, R. J.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Sb-C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries. Energy Environ. Sci. 2014, 7, 323–328.

    Article  Google Scholar 

  35. Wang, S. Q.; Xia, L.; Yu, L.; Zhang, L.; Wang, H. H.; Lou, X. W. D. Free-standing nitrogen-doped carbon nanofiber films: Integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv. Energy Mater. 2016, 6, 1502217.

    Article  Google Scholar 

  36. Park, C.-M.; Yoon, S.; Lee, S.-I.; Sohn, H.-J. Enhanced electrochemical properties of nanostructured bismuth-based composites for rechargeable lithium batteries. J. Power Sources 2009, 186, 206–210.

    Article  Google Scholar 

  37. Su, D. W.; Dou, S. X.; Wang, G. X. Bismuth: A new anode for the Na-ion battery. Nano Energy 2015, 12, 88–95.

    Article  Google Scholar 

  38. Yang, F. H.; Yu, F.; Zhang, Z.; Zhang, K.; Lai, Y. Q.; Li, J. Bismuth nanoparticles embedded in carbon spheres as anode materials for sodium/lithium-ion batteries. Chem.—Eur. J. 2016, 22, 2333–2338.

    Article  Google Scholar 

  39. Zuo, W. H.; Zhu, W. H.; Zhao, D. F.; Sun, Y. F.; Li, Y. Y.; Liu, J. P.; Lou, X. W. Bismuth oxide: A versatile high-capacity electrode material for rechargeable aqueous metal-ion batteries. Energy Environ. Sci. 2016, 9, 2881–2891.

    Article  Google Scholar 

  40. Zhang, W. X.; Liu, J.; Wu, G. Evolution of structure and properties of PAN precursors during their conversion to carbon fibers. Carbon 2003, 41, 2805–2812.

    Article  Google Scholar 

  41. Chen, J. C.; Harrison, I. R. Modification of polyacrylonitrile (PAN) carbon fiber precursor via post-spinning plasticization and stretching in dimethyl formamide (DMF). Carbon 2002, 40, 25–45.

    Article  Google Scholar 

  42. Dalton, S.; Heatley, F.; Budd, P. M. Thermal stabilization of polyacrylonitrile fibres. Polymer 1999, 40, 5531–5543.

    Article  Google Scholar 

  43. Rahaman, M. S. A.; Ismail, A. F.; Mustafa, A. A review of heat treatment on polyacrylonitrile fiber. Polym. Degrad. Stabil. 2007, 92, 1421–1432.

    Article  Google Scholar 

  44. Hu, Z.; Zhu, Z. Q.; Cheng, F. Y.; Zhang, K.; Wang, J. B.; Chen, C. C.; Chen, J. Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 2015, 8, 1309–1316.

    Article  Google Scholar 

  45. Darwiche, A.; Marino, C.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism. J. Am. Chem. Soc. 2012, 134, 20805–20811.

    Article  Google Scholar 

  46. Jahel, A.; Darwiche, A.; Matei Ghimbeu, C.; Vix-Guterl, C.; Monconduit, L. High cycleability nano-GeO2/mesoporous carbon composite as enhanced energy storage anode material in Li-ion batteries. J. Power Sources 2014, 269, 755–759.

    Article  Google Scholar 

  47. Song, J.; Wang, L.; Lu, Y. H.; Liu, J.; Guo, B. K.; Xiao, P. H.; Lee, J.-J.; Yang, X.-Q.; Henkelman, G.; Goodenough, J. B. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J. Am. Chem. Soc. 2015, 137, 2658–2664.

    Article  Google Scholar 

  48. Zhao, Y. B.; Manthiram, A. High-capacity, high-rate Bi-Sb alloy anodes for lithium-ion and sodium-ion batteries. Chem. Mater. 2015, 27, 3096–3101.

    Article  Google Scholar 

  49. Wang, Y.; Su, D. W.; Wang, C. Y.; Wang, G. X. SnO2@ MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries. Electrochem. Commun 2013, 29, 8–11.

    Article  Google Scholar 

  50. Liu, J. H.; Liu, X.-W. Two-dimensional nanoarchitectures for lithium storage. Adv. Mater. 2012, 24, 4097–4111.

    Article  Google Scholar 

  51. Wang, Y.-X.; Lim, Y.-G.; Park, M.-S.; Chou, S.-L.; Kim, J. H.; Liu, H.-K.; Dou, S.-X.; Kim, Y.-J. Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances. J. Mater. Chem. A 2014, 2, 529–534.

    Article  Google Scholar 

  52. Kim, K.-T.; Ali, G.; Chung, K. Y.; Yoon, C. S.; Yashiro, H.; Sun, Y.-K.; Lu, J.; Amine, K.; Myung, S.-T. Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. Nano Lett. 2014, 14, 416–422.

    Article  Google Scholar 

  53. Sottmann, J.; Herrmann, M.; Vajeeston, P.; Hu, Y.; Ruud, A.; Drathen, C.; Emerich, H.; Fjellvå g, H.; Wragg, D. S. How crystallite size controls the reaction path in nonaqueous metal ion batteries: The example of sodium bismuth alloying. Chem. Mater. 2016, 28, 2750–2756.

    Article  Google Scholar 

  54. NuLi, Y.; Yang, J.; Jiang, M. S. Synthesis and characterization of Sb/CNT and Bi/CNT composites as anode materials for lithium-ion batteries. Mater. Lett. 2008, 62, 2092–2095.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (Nos. 2015CB755602 and 2013CB922104), the National Natural Science Foundation of China (Nos. 21474034, 51673077, and 51603078), the Fundamental Research Funds for the Central Universities (HUST: No. 2016YXMS029) and Director Fund of WNLO. We also thank the Analytical and Testing Center of Huazhong University of Science and Technology and the Center of Micro-Fabrication and Characterization (CMFC) of WNLO for use of their facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chong Li or Mingqiang Zhu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, H., Li, Q., Cao, M. et al. Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries. Nano Res. 10, 2156–2167 (2017). https://doi.org/10.1007/s12274-016-1408-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1408-z

Keywords

Navigation