Skip to main content
Log in

Flexible cobalt phosphide network electrocatalyst for hydrogen evolution at all pH values

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

High-performance electrocatalysts for water splitting at all pH values have attracted considerable interest in the field of sustainable hydrogen evolution. Herein, we report an efficient electrocatalyst with a nanocrystalline cobalt phosphide (CoP) network for water splitting in the pH range of 0–14. The novel flexible electrocatalyst is derived from a desirable nanocrystalline CoP network grown on a conductive Hastelloy belt. This kind of self-supported CoP network is directly used as an electrocatalytic cathode for hydrogen evolution. The nanocrystalline network structure results in superior performance with a low onset overpotential of ~45 mV over a broad pH range of 0 to 14 and affords a catalytic current density of 100 mA·cm−2 even in neutral media. The CoP network exhibits excellent catalytic properties not only at extreme pH values (0 and 14) but also in neutral media (pH = 7), which is comparable to the behavior of state-of-the-art platinum-based metals. The system exhibits an excellent flexible property and maintains remarkable catalytic stability during continuous 100-h-long electrolysis even after 100 cycles of bending/extending from 100° to 250°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

    Article  Google Scholar 

  2. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    Article  Google Scholar 

  3. Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

    Article  Google Scholar 

  4. Faber, M. S.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519–3542.

    Article  Google Scholar 

  5. Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.

    Article  Google Scholar 

  6. Chia, X.; Eng, A. Y. S.; Ambrosi, A.; Tan, S. M.; Pumera, M. Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chem. Rev. 2015, 115, 11941–11966.

    Article  Google Scholar 

  7. Kong, D. S.; Cha, J. J.; Wang, H. T.; Lee, H. R.; Cui, Y. Firstrow transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 2013, 6, 3553–3558.

    Article  Google Scholar 

  8. Feng, L. L.; Yu, G. T.; Wu, Y. Y.; Li, G. D.; Li, H.; Sun, Y. H.; Asefa, T.; Chen, W.; Zou, X. X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 2015, 137, 14023–14026.

    Article  Google Scholar 

  9. Tian, J. Q.; Liu, Q.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. Self-supported Cu3P nanowire arrays as an integrated highperformance three-dimensional cathode for generating hydrogen from water. Angew. Chem., Int. Ed. 2014, 53, 9577–9581.

    Article  Google Scholar 

  10. Jiang, P.; Liu, Q.; Liang, Y. H.; Tian, J. Q.; Asiri, A. M.; Sun, X. P. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew. Chem., Int. Ed. 2014, 53, 12855–12859.

    Article  Google Scholar 

  11. Yang, H. C.; Zhang, Y. J.; Hu, F.; Wang, Q. B. Urchin-like CoP nanocrystals as hydrogen evolution reaction and oxygen reduction reaction dual-electrocatalyst with superior stability. Nano Lett. 2015, 15, 7616–7620.

    Article  Google Scholar 

  12. Tang, C. Y.; Wang, W.; Sun, A. K.; Qi, C. K.; Zhang, D. Z.; Wu, Z. Z.; Wang, D. Z. Sulfur-decorated molybdenum carbide catalysts for enhanced hydrogen evolution. ACS Catal. 2015, 5, 6956–6963.

    Article  Google Scholar 

  13. Liu, Y. P.; Yu, G. T.; Li, G.-D.; Sun, Y. H.; Asefa, T.; Chen, W.; Zou, X. X. Coupling Mo2C with nitrogen-rich nanocarbon leads to efficient hydrogen-evolution electrocatalytic sites. Angew. Chem., Int. Ed. 2015, 54, 10752–10757.

    Article  Google Scholar 

  14. Masa, J.; Weide, P.; Peeters, D.; Sinev, I.; Xia, W.; Sun, Z. Y.; Somsen, C.; Muhler, M.; Schuhmann, W. Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: Oxygen and hydrogen evolution. Adv. Energy Mater. 2016, 6, 1502313.

    Article  Google Scholar 

  15. Kong, D. S.; Wang, H. T.; Lu, Z. Y.; Cui, Y. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2014, 136, 4897–4900.

    Article  Google Scholar 

  16. Cai, Z. X.; Song, X. H.; Wang, Y. R.; Chen, X. Electrodeposition-assisted synthesis of Ni2P nanosheets on 3D graphene/Ni foam electrode and its performance for electrocatalytic hydrogen production. ChemElectroChem 2015, 2, 1665–1671.

    Article  Google Scholar 

  17. Sun, C. C.; Dong, Q. C.; Yang, J.; Dai, Z. Y.; Lin, J. J.; Chen, P.; Huang, W.; Dong, X. C. Metal–organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting. Nano Res. 2016, 9, 2234–2243.

    Article  Google Scholar 

  18. Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053–10061.

    Article  Google Scholar 

  19. Huang, Z. P.; Chen, Z. Z.; Chen, Z. B.; Lv, C. C.; Humphrey, M. G.; Zhang, C. Cobalt phosphide nanorods as an efficient electrocatalyst for the hydrogen evolution reaction. Nano Energy 2014, 9, 373–382.

    Article  Google Scholar 

  20. Xu, K.; Wang, F. M.; Wang, Z. X.; Zhan, X. Y.; Wang, Q. S.; Cheng, Z. Z.; Safdar, M.; He, J. Component-controllable WS2(1–x)Se2x nanotubes for efficient hydrogen evolution reaction. ACS Nano 2014, 8, 8468–8476.

    Article  Google Scholar 

  21. Xu, S. J.; Li, D.; Wu, P. Y. One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 2015, 25, 1127–1136.

    Article  Google Scholar 

  22. Jiang, Z. L.; Tang, Y. X.; Tay, Q.; Zhang, Y. Y.; Malyi, O. I.; Wang, D. P.; Deng, J. Y.; Lai, Y. K.; Zhou, H. F.; Chen, X. D. et al. Understanding the role of nanostructures for efficient hydrogen generation on immobilized photocatalysts. Adv. Energy Mater. 2013, 3, 1368–1380.

    Article  Google Scholar 

  23. Ye, T. N.; Lv, L. B.; Xu, M.; Zhang, B.; Wang, K. X.; Su, J.; Li, X. H.; Chen, J. S. Hierarchical carbon nanopapers coupled with ultrathin MoS2 nanosheets: Highly efficient large-area electrodes for hydrogen evolution. Nano Energy 2015, 15, 335–342.

    Article  Google Scholar 

  24. Jin, Y. S.; Wang, H. T.; Li, J. J.; Yue, X.; Han, Y. J.; Shen, P. K.; Cui, Y. Porous MoO2 nanosheets as non-noble bifunctional electrocatalysts for overall water splitting. Adv. Mater. 2016, 28, 3785–3790.

    Article  Google Scholar 

  25. Wang, X. G.; Li, W.; Xiong, D. H.; Petrovykh, D. Y.; Liu, L. F. Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting. Adv. Funct. Mater. 2016, 26, 4067–4077.

    Article  Google Scholar 

  26. Li, Y. J.; Zhang, H. C.; Jiang, M.; Kuang, Y.; Sun, X. M.; Duan, X. Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting. Nano Res. 2016, 9, 2251–2259.

    Article  Google Scholar 

  27. Kleingardner, J. G.; Kandemir, B.; Bren, K. L. Hydrogen evolution from neutral water under aerobic conditions catalyzed by cobalt microperoxidase-11. J. Am. Chem. Soc. 2014, 136, 4–7.

    Article  Google Scholar 

  28. Huang, Z. F.; Song, J. J.; Li, K.; Tahir, M.; Wang, Y. T.; Pan, L.; Wang, L.; Zhang, X. W.; Zou, J. J. Hollow cobaltbased bimetallic sulfide polyhedra for efficient all-pH-value electrochemical and photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2016, 138, 1359–1365.

    Article  Google Scholar 

  29. Staszak-Jirkovsky, J.; Malliakas, C. D.; Lopes, P. P.; Danilovic, N.; Kota, S. S.; Chang, K. C.; Genorio, B.; Strmcnik, D.; Stamenkovic, V. R.; Kanatzidis, M. G. et al. Design of active and stable Co-Mo-Sx chalcogels as pHuniversal catalysts for the hydrogen evolution reaction. Nat. Mater. 2016, 15, 197–203.

    Article  Google Scholar 

  30. Gong, M.; Wang, D.-Y.; Chen, C.-C.; Hwang, B.-J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28–46.

  31. Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590.

    Article  Google Scholar 

  32. Gu, S.; Du, H. F.; Asiri, A. M.; Sun, X. P.; Li, C. M. Threedimensional interconnected network of nanoporous CoP nanowires as an efficient hydrogen evolution cathode. Phys. Chem. Chem. Phys. 2014, 16, 16909–16913.

    Article  Google Scholar 

  33. Gao, W.; Wu, G.; Janicke, M. T.; Cullen, D. A.; Mukundan, R.; Baldwin, J. K.; Brosha, E. L.; Galande, C.; Ajayan, P. M.; More, K. L. et al. Ozonated graphene oxide film as a proton-exchange membrane. Angew. Chem., Int. Ed. 2014, 53, 3588–3593.

    Article  Google Scholar 

  34. Escapa, A.; Mateos, R.; Martinez, E. J.; Blanes, J. Microbial electrolysis cells: An emerging technology for wastewater treatment and energy recovery. From laboratory to pilot plant and beyond. Renew. Sustain. Energy Rev. 2016, 55, 942–956.

    Article  Google Scholar 

  35. Zeng, K.; Zhang, D. K. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010, 36, 307–326.

    Article  Google Scholar 

  36. Wu, Y. Z.; Chen, M. X.; Han, Y. Z.; Luo, H. X.; Su, X. J.; Zhang, M. T.; Lin, X. H.; Sun, J. L.; Wang, L.; Deng, L. et al. Fast and simple preparation of iron-based thin films as highly efficient water-oxidation catalysts in neutral aqueous solution. Angew. Chem., Int. Ed. 2015, 54, 4870–4875.

    Article  Google Scholar 

  37. Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.

    Article  Google Scholar 

  38. McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.

    Article  Google Scholar 

  39. Feng, J.-X.; Xu, H.; Dong, Y.-T.; Ye, S.-H.; Tong, Y. X.; Li, G.-R. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 128, 3758–3762.

    Article  Google Scholar 

  40. Ha, D.-H.; Han, B. H.; Risch, M.; Giordano, L.; Yao, K. P. C.; Karayaylali, P.; Shao-Horn, Y. Activity and stability of cobalt phosphides for hydrogen evolution upon water splitting. Nano Energy, in press, DOI: 10.1016/j.nanoen.2016.04.034.

  41. Li, L. L.; Chen, C.; Chen, L.; Zhu, Z. X.; Hu, J. L. Catalytic decomposition of toxic chemicals over iron group metals supported on carbon nanotubes. Environ. Sci. Technol. 2014, 48, 3372–3377.

    Article  Google Scholar 

  42. You, B.; Jiang, N.; Sheng, M. L.; Bhushan, M. W.; Sun, Y. J. Hierarchically porous urchin-like Ni2P superstructures supported on nickel foam as efficient bifunctional electrocatalysts for overall water splitting. ACS Catal. 2016, 6, 714–721.

    Article  Google Scholar 

  43. Yang, X. L.; Lu, A.-Y.; Zhu, Y. H.; Hedhili, M. N.; Min, S. X.; Huang, K.-W.; Han, Y.; Li, L.-J. CoP nanosheet assembly grown on carbon cloth: A highly efficient electrocatalyst for hydrogen generation. Nano Energy 2015, 15, 634–641.

    Article  Google Scholar 

  44. Zhu, Y. P.; Liu, Y. P.; Ren, T. Z.; Yuan, Z. Y. Self-supported cobalt phosphide mesoporous nanorod arrays: A flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Adv. Funct. Mater. 2015, 25, 7337–7347.

    Article  Google Scholar 

  45. Wu, H. B.; Xia, B. Y.; Yu, L.; Yu, X. Y.; Lou, X. W. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nat. Commun. 2015, 6, 6512.

    Article  Google Scholar 

  46. Fei, H. L.; Dong, J. C.; Arellano-Jiménez, M. J.; Ye, G. L.; Dong Kim, N.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 2015, 6, 8668.

    Article  Google Scholar 

  47. Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W. D.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.

    Article  Google Scholar 

  48. Xia, C.; Jiang, Q.; Zhao, C.; Hedhili, M. N.; Alshareef, H. N. Selenide-based electrocatalysts and scaffolds for water oxidation applications. Adv. Mater. 2016, 28, 77–85.

    Article  Google Scholar 

  49. Yang, Z. H.; Liu, L.; Wang, X. Y.; Yang, S. Y.; Su, X. P. Stability and electronic structure of the Co–P compounds from first-principle calculations. J. Alloys Compd. 2011, 509, 165–171.

    Article  Google Scholar 

  50. Barton, B. E.; Rauchfuss, T. B. Hydride-containing models for the active site of the nickel-iron hydrogenases. J. Am. Chem. Soc. 2010, 132, 14877–14885.

    Article  Google Scholar 

  51. Nicolet, Y.; de Lacey, A. L.; Vernède, X.; Fernandez, V. M.; Hatchikian, E. C.; Fontecilla-Camps, J. C. Crystallographic and FTIR spectroscopic evidence of changes in Fe coordination upon reduction of the active site of the Fe-only hydrogenase from Desulfovibrio desulfuricans. J. Am. Chem. Soc. 2001, 123, 1596–1601.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support from the National Basic Research Program of China (No. 2015CB358600), National Natural Science Foundation of China (No. 21527805), the Excellent Young Scholar Fund from National Natural Science Foundation of China (No. 21422103), Jiangsu Fund for Distinguished Young Scientist (No. BK20140010), the Natural Science Foundation of Jiangsu Province (No. BK20151228), the Natural Science Foundation in High Education of Jiangsu Province (16KJB430024), and Specialized Research Fund for the Doctoral Program of Higher Education (No. 20133201120028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Xiong, Yinghui Sun or Guifu Zou.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Li, Y., Xia, Y. et al. Flexible cobalt phosphide network electrocatalyst for hydrogen evolution at all pH values. Nano Res. 10, 1010–1020 (2017). https://doi.org/10.1007/s12274-016-1360-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1360-y

Keywords

Navigation