Skip to main content
Log in

Oxygen-suppressed selective growth of monolayer hexagonal boron nitride on copper twin crystals

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Controlled growth of hexagonal boron nitride (h-BN) with desired properties is essential for its wide range of applications. Here, we systematically carried out the chemical vapor deposition of monolayer h-BN on Cu twin crystals. It was found that h-BN nucleated and grew preferentially and simultaneously on the narrow twin crystal strips present in the Cu substrates. The density functional theory calculations revealed that the introduction of oxygen could efficiently tune the selectivity. This is because of the reduction in the dehydrogenation barrier of the precursor molecules by the introduction of oxygen. Our findings throw light on the direct growth of functional h-BN nanoribbons on nano-twinned crystal strips and switching of the growth behavior of h-BN films by oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, L. H.; Cervenka, J.; Watanabe, K.; Taniguchi, T.; Chen, Y. Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano 2014, 8, 1457–1462.

    Article  Google Scholar 

  2. Yin, J.; Li, J. D.; Hang, Y.; Yu, J.; Tai, G. A.; Li, X. M.; Zhang, Z. H.; Guo, W. L. Boron nitride nanostructures: Fabrication, functionalization and applications. Small 2016, 12, 2942–2968.

    Article  Google Scholar 

  3. Golberg, D.; Bando, Y.; Huang, Y.; Terao, T.; Mitome, M.; Tang, C. C.; Zhi, C. Y. Boron nitride nanotubes and nanosheets. ACS Nano 2010, 4, 2979–2993.

    Article  Google Scholar 

  4. Tran, T. T.; Bray, K.; Ford, M. J.; Toth, M.; Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 2016, 11, 37–41.

    Article  Google Scholar 

  5. Li, X. M.; Yin, J.; Zhou, J. X.; Guo, W. L. Large area hexagonal boron nitride monolayer as efficient atomically thick insulating coating against friction and oxidation. Nanotechnology 2014, 25, 105701.

    Article  Google Scholar 

  6. Lee, G.-H.; Yu, Y.-J.; Lee, C.; Dean, C.; Shepard, K. L.; Kim, P.; Hone, J. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett. 2011, 99, 243114.

    Article  Google Scholar 

  7. Sutter, P.; Lahiri, J.; Zahl, P.; Wang, B.; Sutter, E. Scalable synthesis of uniform few-layer hexagonal boron nitride dielectric films. Nano Lett. 2013, 13, 276–281.

    Article  Google Scholar 

  8. Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

    Article  Google Scholar 

  9. Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.

    Article  Google Scholar 

  10. Gorbachev, R. V.; Riaz, I.; Nair, R. R.; Jalil, R.; Britnell, L.; Belle, B. D.; Hill, E. W.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T. et al. Hunting for monolayer boron nitride: Optical and Raman signatures. Small 2011, 7, 465–468.

    Article  Google Scholar 

  11. Gao, Y.; Ren, W. C.; Ma, T.; Liu, Z. B.; Zhang, Y.; Liu, W.-B.; Ma, L.-P.; Ma, X. L.; Cheng, H.-M. Repeated and controlled growth of monolayer, bilayer and few-layer hexagonal boron nitride on Pt foils. ACS Nano 2013, 7, 5199–5206.

    Article  Google Scholar 

  12. Kim, K. K.; Hsu, A.; Jia, X. T.; Kim, S. M.; Shi, Y. M.; Hofmann, M.; Nezich, D.; Rodriguez-Nieva, J. F.; Dresselhaus, M.; Palacios, T. et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 2012, 12, 161–166.

    Article  Google Scholar 

  13. Kim, S. M.; Hsu, A.; Park, M. H.; Chae, S. H.; Yun, S. J.; Lee, J. S.; Cho, D.-H.; Fang, W. J.; Lee, C.; Palacios, T. et al. Synthesis of large-area multilayer hexagonal boron nitride for high material performance. Nat. Commun. 2015, 6, 8662.

    Article  Google Scholar 

  14. Yin, J.; Li, X. M.; Zhou, J. X.; Guo, W. L. Ultralight threedimensional boron nitride foam with ultralow permittivity and superelasticity. Nano Lett. 2013, 13, 3232–3236.

    Article  Google Scholar 

  15. Wood, J. D.; Schmucker, S. W.; Lyons, A. S.; Pop, E.; Lyding, J. W. Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett. 2011, 11, 4547–4554.

    Article  Google Scholar 

  16. Murdock, A. T.; Koos, A.; Britton, T. B.; Houben, L.; Batten, T.; Zhang, T.; Wilkinson, A. J.; Dunin-Borkowski, R. E.; Lekka, C. E.; Grobert, N. Controlling the orientation, edge geometry, and thickness of chemical vapor deposition graphene. ACS Nano 2013, 7, 1351–1359.

    Article  Google Scholar 

  17. Hayashi, K.; Sato, S.; Ikeda, M.; Kaneta, C.; Yokoyama, N. Selective graphene formation on copper twin crystals. J. Am. Chem. Soc. 2012, 134, 12492–12498.

    Article  Google Scholar 

  18. Lee, J.-H.; Lee, E. K.; Joo, W.-J.; Jang, Y.; Kim, B.-S.; Lim, J. Y.; Choi, S.-H.; Ahn, S. J.; Ahn, J. R.; Park, M.-H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 2014, 344, 286–289.

    Article  Google Scholar 

  19. Hite, J. K.; Robinson, Z. R.; Eddy, C. R.; Feigelson, B. N. Electron backscatter diffraction study of hexagonal boron nitride growth on Cu single-crystal substrates. ACS Appl. Mater. Interfaces 2015, 7, 15200–15205.

    Article  Google Scholar 

  20. Lee, Y.-H.; Liu, K.-K.; Lu, A.-Y.; Wu, C.-Y.; Lin, C.-T.; Zhang, W. J.; Su, C.-Y.; Hsu, C.-L.; Lin, T.-W.; Wei, K.-H. et al. Growth selectivity of hexagonal-boron nitride layers on Ni with various crystal orientations. RSC Adv. 2012, 2, 111–115.

    Article  Google Scholar 

  21. Cho, H.; Park, S.; Won, D.-I.; Kang, S. O.; Pyo, S.-S.; Kim, D.-I.; Kim, S. M.; Kim, H. C.; Kim, M. J. Growth kinetics of white graphene (h-BN) on a planarised Ni foil surface. Sci. Rep. 2015, 5, 11985.

    Article  Google Scholar 

  22. Song, X. J.; Gao, J. F.; Nie, Y. F.; Gao, T.; Sun, J. Y.; Ma, D. L.; Li, Q. C.; Chen, Y. B.; Jin, C. H.; Bachmatiuk, A. et al. Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation. Nano Res. 2015, 8, 3164–3176.

    Article  Google Scholar 

  23. Li, J. D.; Li, Y.; Yin, J.; Ren, X. B.; Liu, X. F.; Jin, C. H.; Guo, W. L. Growth of polar hexagonal boron nitride monolayer on nonpolar copper with unique orientation. Small 2016, 12, 3645–3650.

    Article  Google Scholar 

  24. Yin, J.; Liu, X. F.; Lu, W. L.; Li, J. D.; Cao, Y. Z.; Li, Y.; Xu, Y.; Li, X. M.; Zhou, J.; Jin, C. H. et al. Aligned growth of hexagonal boron nitride monolayer on germanium. Small 2015, 11, 5375–5380.

    Article  Google Scholar 

  25. Hao, Y. F.; Wang, L.; Liu, Y. Y.; Chen, H.; Wang, X. H.; Tan, C.; Nie, S.; Suk, J. W.; Jiang, T. F.; Liang, T. F. et al. Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. Nat. Nanotechnol. 2016, 11, 426–431.

    Article  Google Scholar 

  26. Hao, Y. F.; Bharathi, M. S.; Wang, L.; Liu, Y. Y.; Chen, H.; Nie, S.; Wang, X. H.; Chou, H.; Tan, C.; Fallahazad, B. et al. The role of surface oxygen in the growth of large singlecrystal graphene on copper. Science 2013, 342, 720–723.

    Article  Google Scholar 

  27. Zhang, Z. H.; Guo, W. L.; Yakobson, B. I. Self-modulated band gap in boron nitride nanoribbons and hydrogenated sheets. Nanoscale 2013, 5, 6381–6387.

    Article  Google Scholar 

  28. Zhang, Z. H.; Guo, W. L. Energy-gap modulation of BN ribbons by transverse electric fields: First-principles calculations. Phys. Rev. B 2008, 77, 075403.

    Article  Google Scholar 

  29. Zheng, F. W.; Zhou, G.; Liu, Z. R.; Wu, J.; Duan, W. H.; Gu, B.-L.; Zhang, S. B. Half metallicity along the edge of zigzag boron nitride nanoribbons. Phys. Rev. B 2008, 78, 205415.

    Article  Google Scholar 

  30. Zeng, H. B.; Zhi, C. Y.; Zhang, Z. H.; Wei, X. L.; Wang, X. B.; Guo, W. L.; Bando, Y.; Golberg, D. “White Graphenes”: Boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano Lett. 2010, 10, 5049–5055.

  31. Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978–9985.

    Article  Google Scholar 

  32. Sheppard, D.; Terrell, R.; Henkelman, G. Optimization methods for finding minimum energy paths. J. Chem. Phys. 2008, 128, 134106.

    Article  Google Scholar 

  33. Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.

    Article  Google Scholar 

  34. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  35. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  36. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  37. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  Google Scholar 

  38. Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.

    Article  Google Scholar 

  39. Yin, J.; Yu, J.; Li, X. M.; Li, J. D.; Zhou, J. X.; Zhang, Z. H.; Guo, W. L. Large single-crystal hexagonal boron nitride monolayer domains with controlled morphology and straight merging boundaries. Small 2015, 11, 4497–4502.

    Article  Google Scholar 

  40. Pande, C. S.; Imam, M. A.; Rath, B. B. Study of annealing twins in fcc metals and alloys. Metallurg. Trans. A 1990, 21, 2891–2896.

    Article  Google Scholar 

  41. Mahajan, S.; Pande, C. S.; Imam, M. A.; Rath, B. B. Formation of annealing twins in f.c.c. crystals. Acta Mater. 1997, 45, 2633–2638.

    Article  Google Scholar 

  42. Zhang, Z. H.; Liu, Y. Y.; Yang, Y.; Yakobson, B. I. Growth mechanism and morphology of hexagonal boron nitride. Nano Lett. 2016, 16, 1398–1403.

    Article  Google Scholar 

  43. Liu, Y. Y.; Bhowmick, S.; Yakobson, B. I. BN white graphene with “colorful” edges: The energies and morphology. Nano Lett. 2011, 11, 3113–3116.

    Article  Google Scholar 

  44. Lu, L.; Shen, Y. F.; Chen, X. H.; Qian, L. H.; Lu, K. Ultrahigh strength and high electrical conductivity in copper. Science 2004, 304, 422–426.

    Article  Google Scholar 

  45. Kidambi, P. R.; Blume, R.; Kling, J.; Wagner, J. B.; Baehtz, C.; Weatherup, R. S.; Schloegl, R.; Bayer, B. C.; Hofmann, S. In situ observations during chemical vapor deposition of hexagonal boron nitride on polycrystalline copper. Chem. Mater. 2014, 26, 6380–6392.

    Article  Google Scholar 

  46. Baronian, W. The optical properties of thin boron nitride films. Mater. Res. Bull. 1972, 7, 119–124.

    Article  Google Scholar 

  47. Blase, X.; Rubio, A.; Louie, S. G.; Cohen, M. L. Quasiparticle band structure of bulk hexagonal boron nitride and related systems. Phys. Rev. B 1995, 51, 6868–6875.

    Article  Google Scholar 

  48. Bernard, S.; Miele, P. Nanostructured and architectured boron nitride from boron, nitrogen and hydrogen-containing molecular and polymeric precursors. Mater. Today 2014, 17, 443–450.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (Nos. 2013CB932604 and 2012CB933403), National Natural Science Foundation of China (Nos. 51535005, 51472117, 11472131, and 11622218), the Jiangsu Natural Science Foundation (Nos. BK20130781 and BK20160037), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Nos. MCMS-0416K01, MCMS-0416G01, and 0414K01), the Nanjing University of Aeronautics and Astronautics (NUAA) Fundamental Research Funds (Nos. NP2015203 and NS2014012), the Funding of Jiangsu Innovation Program for Graduate Education (No. CXZZ13_0150) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanlin Guo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, Y., Wang, Q. et al. Oxygen-suppressed selective growth of monolayer hexagonal boron nitride on copper twin crystals. Nano Res. 10, 826–833 (2017). https://doi.org/10.1007/s12274-016-1338-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1338-9

Keywords

Navigation