Skip to main content
Log in

Binary synergistic enhancement of dielectric and microwave absorption properties: A composite of arm symmetrical PbS dendrites and polyvinylidene fluoride

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Arm symmetrical PbS dendrite (ASD-PbS) nanostructures can be prepared on a large scale by a solvothermal process. The ASD-PbSs exhibit a three-dimensional symmetrical structure, and each dendrite grows multiple branches on the main trunk. Such unique ASD-PbSs can be combined with polyvinylidene fluoride (PVDF) to prepare a composite material with enhanced dielectric and microwave-absorption properties. A detailed investigation of the dependence of the dielectric properties on the frequency and temperature shows that the ASD-PbS/PVDF composite has an ultrahigh dielectric constant and a low percolation threshold. The dielectric permittivity is as high as 1,548 when the concentration of the ASD-PbS filler reaches 13.79 vol.% at 102 Hz, which is 150 times larger than that of pure PVDF, while the composite is as flexible as pure PVDF. Furthermore, the maximum reflection loss can reach–36.69 dB at 16.16 GHz with a filler content of only 2 wt.%, which indicates excellent microwave absorption. The loss mechanism is also elucidated. The present work demonstrates that the addition of metal sulfide microcrystals to polymer matrix composites provides a useful method for improving the dielectric and microwave-absorption properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Androulakis, J.; Todorov, I.; He, J. Q.; Chung, D.-Y.; Dravid, V.; Kanatzidis, M. Thermoelectrics from abundant chemical elements: High-performance nanostructured PbSe–PbS. J. Am. Chem. Soc. 2011, 133, 10920–10927.

    Article  Google Scholar 

  2. Zhao, L.-D.; He, J. Q.; Wu, C.-I.; Hogan, T. P.; Zhou, X. Y.; Uher, C.; Dravid, V. P.; Kanatzidis, M. G. Thermoelectrics with earth abundant elements: High performance p-type PbS nanostructured with SrS and CaS. J. Am. Chem. Soc. 2012, 134, 7902–7912.

    Article  Google Scholar 

  3. Etgar, L.; Moehl, T.; Gabriel, S.; Hickey, S. G.; Eychmüller, A.; Grätzel, M. Light energy conversion by mesoscopic PbS quantum Dots/TiO2 heterojunction solar cells. ACS Nano 2012, 6, 3092–3099.

    Article  Google Scholar 

  4. Hyun, B.-R.; Choi, J. J.; Seyler, K. L.; Hanrath, T.; Wise, F. W. Heterojunction PbS nanocrystal solar cells with oxide charge-transport layers. ACS Nano 2013, 7, 10938–10947.

    Article  Google Scholar 

  5. Sun, Z. H.; Liu, Z. K.; Li, J. H.; Tai, G.-A.; Lau, S.-P.; Yan, F. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 2012, 24, 5878–5883.

    Article  Google Scholar 

  6. Supran, G. J.; Song, K. W.; Hwang, G. W.; Correa, R. E.; Scherer, J.; Dauler, E. A.; Shirasaki, Y.; Bawendi, M. G.; Bulović, V. High-performance shortwave-infrared lightemitting devices using core–shell (PbS–CdS) colloidal quantum dots. Adv. Mater. 2015, 27, 1437–1442.

    Article  Google Scholar 

  7. Acharya, S.; Gautam, U. K.; Sasaki, T.; Bando, Y.; Golan, Y.; Ariga, K. Ultra narrow PbS nanorods with intense fluorescence. J. Am. Chem. Soc. 2008, 130, 4594–4595.

    Article  Google Scholar 

  8. Bakulin, A. A.; Neutzner, S.; Bakker, H. J.; Ottaviani, L.; Barakel, D.; Chen, Z. Y. Charge trapping dynamics in PbS colloidal quantum dot photovoltaic devices. ACS Nano 2013, 7, 8771–8779.

    Article  Google Scholar 

  9. Querejeta-Fernández, A.; Hernández-Garrido, J. C.; Yang, H. X.; Zhou, Y. L.; Varela, A.; Parras, M.; Calvino-Gámez, J. J.; González-Calbet, J. M.; Green, P. F.; Kotov, N. A. Unknown aspects of self-assembly of PbS microscale superstructures. ACS Nano 2012, 6, 3800–3812.

    Article  Google Scholar 

  10. Qi, L.; Lee, B. I.; Chen, S.; Samuels, W. D.; Exarhos, G. J. High-dielectric-constant silver–epoxy composites as embedded dielectrics. Adv. Mater. 2005, 17, 1777–1781.

    Article  Google Scholar 

  11. Xu, J. W.; Wong, C. P. Low-loss percolative dielectric composite. Appl. Phys. Lett. 2005, 87, 082907.

    Article  Google Scholar 

  12. Dang, Z. M.; Wang, L.; Yin, Y.; Zhang, Q.; Lei, Q. Q. Giant dielectric permittivities in functionalized carbon-nanotube/ electroactive-polymer nanocomposites. Adv. Mater. 2007, 19, 852–857.

    Article  Google Scholar 

  13. Chu, B. J.; Zhou, X.; Ren, K. L.; Neese, B.; Lin, M. R.; Wang, Q.; Bauer, F.; Zhang, Q. M. A dielectric polymer with high electric energy density and fast discharge speed. Science 2006, 313, 334–336.

    Article  Google Scholar 

  14. Neese, B.; Chu, B. J.; Lu, S.-G.; Wang, Y.; Furman, E.; Zhang, Q. M. Large electrocaloric effect in ferroelectric polymers near room temperature. Science 2008, 321, 821–823.

    Article  Google Scholar 

  15. He, F.; Lau, S.; Chan, H. L.; Fan, J. T. High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates. Adv. Mater. 2009, 21, 710–715.

    Article  Google Scholar 

  16. Chang, C.; Tran, V. H.; Wang, J. B.; Fuh, Y.-K.; Lin, L. W. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 2010, 10, 726–731.

    Article  Google Scholar 

  17. Arbatti, M.; Shan, X.; Cheng, Z. Y. Ceramic–polymer composites with high dielectric constant. Adv. Mater. 2007, 19, 1369–1372.

    Article  Google Scholar 

  18. Du, Z.-Y.; Xu, T.-T.; Huang, B.; Su, Y.-J.; Xue, W.; He, C.-T.; Zhang, W.-X.; Chen, X.-M. Switchable guest molecular dynamics in a perovskite-like coordination polymer toward sensitive thermoresponsive dielectric materials. Angew. Chem., Int. Ed. 2015, 54, 914–918.

    Article  Google Scholar 

  19. Dang, Z.-M.; Yuan, J.-K.; Yao, S.-H.; Liao, R.-J. Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 2013, 25, 6334–6365.

    Article  Google Scholar 

  20. Dang, Z. M.; Lin, Y. H.; Nan, C. W. Novel ferroelectric polymer composites with high dielectric constants. Adv. Mater. 2003, 15, 1625–1629.

    Article  Google Scholar 

  21. Wang, M. S.; Zhu, J. L.; Zhu, W. L.; Zhu, B.; Liu, J.; Zhu, X. H.; Pu, Y. T.; Sun, P.; Zeng, Z. F.; Li, X. H. et al. The formation of percolative composites with a high dielectric constant and high conductivity. Angew. Chem., Int. Ed. 2012, 51, 9123–9127.

    Article  Google Scholar 

  22. Huang, X. Y.; Jiang, P. K. Core–shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Adv. Mater. 2015, 27, 546–554.

    Article  Google Scholar 

  23. Nan, C.-W. Physics of inhomogeneous inorganic materials. Prog. Mater. Sci. 1993, 37, 1–116.

    Article  Google Scholar 

  24. Wen, B.; Cao, M. S.; Lu, M. M.; Cao, W. Q.; Shi, H. L.; Liu, J.; Wang, X. X.; Jin, H. B.; Fang, X. Y.; Wang, W. Z. et al. Reduced graphene oxides: Light-weight and highefficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 2014, 26, 3484–3489.

    Article  Google Scholar 

  25. Zhang, Y.; Huang, Y.; Zhang, T. F.; Chang, H. C.; Xiao, P. S.; Chen, H. H.; Huang, Z. Y.; Chen, Y. S. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 2015, 27, 2049–2053.

    Article  Google Scholar 

  26. Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

    Article  Google Scholar 

  27. Ding, Y.; Zhang, L.; Liao, Q. L.; Zhang, G. J.; Liu, S.; Zhang, Y., Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe3O4/Fe nanorings. Nano Res. 2016, 9, 2018–2025.

    Article  Google Scholar 

  28. Kuang, D.; Xu, A.; Fang, Y.; Liu, H.; Frommen, C.; Fenske, D. Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process. Adv. Mater. 2003, 15, 1747–1750.

    Article  Google Scholar 

  29. Liu, X. F.; Cui, X. R.; Chen, Y. X.; Zhang, X.-J.; Yu, R. H.; Wang, G.-S.; Ma, H. Modulation of electromagnetic wave absorption by carbon shell thickness in carbon encapsulated magnetite nanospindles–poly(vinylidene fluoride) composites. Carbon 2015, 95, 870–878.

    Article  Google Scholar 

  30. Wang, G. S.; Deng, Y.; Xiang, Y.; Guo, L. Fabrication of radial ZnO nanowire clusters and radial ZnO/PVDF composites with enhanced dielectric properties. Adv. Funct. Mater. 2008, 18, 2584–2592.

    Article  Google Scholar 

  31. Dang, Z.-M.; Wang, H.-Y.; Zhang, Y.-H.; Qi, J.-Q. Morphology and dielectric property of homogenous BaTiO3/ PVDF nanocomposites prepared via the natural adsorption action of nanosized BaTiO3. Macromol. Rapid Commun. 2005, 26, 1185–1189.

    Article  Google Scholar 

  32. Satish, B.; Sridevi, K.; Vijaya, M. S. Study of piezoelectric and dielectric properties of ferroelectric PZT-polymer composites prepared by hot-press technique. J. Phys. D: Appl. Phys. 2002, 35, 2048–2050.

    Article  Google Scholar 

  33. Wang, D. R.; Zhou, T.; Zha, J.-W.; Zhao, J.; Shi, C.-Y.; Dang, Z.-M. Functionalized graphene-BaTiO3/ferroelectric polymer nanodielectric composites with high permittivity, low dielectric loss, and low percolation threshold. J. Mater. Chem. A 2013, 1, 6162–6168.

    Article  Google Scholar 

  34. Wang, G. S. Enhanced dielectric properties of three-phase-percolative composites based on thermoplastic-ceramic matrix (BaTiO3 + PVDF) and ZnO radial nanostructures. ACS Appl. Mater. Interfaces 2010, 2, 1290–1293.

    Article  Google Scholar 

  35. Huang, X. Y.; Jiang, P. K.; Xie, L. Y. Ferroelectric polymer/silver nanocomposites with high dielectric constant and high thermal conductivity. Appl. Phys. Lett. 2009, 95, 242901.

    Article  Google Scholar 

  36. Wang, D. R.; Bao, Y. R.; Zha, J.-W.; Zhao, J.; Dang, Z.-M.; Hu, G.-H. Improved dielectric properties of nanocomposites based on poly(vinylidene fluoride) and poly(vinyl alcohol)- functionalized graphene. ACS Appl. Mater. Interfaces 2012, 4, 6273–6279.

    Article  Google Scholar 

  37. He, D.-X.; Qiu, Y.; Li, L.-L.; Zhao, R.; Xue, W.-D. Large-scale solvent-thermal synthesis of graphene/magnetite/conductive oligomer ternary composites for microwave absorption. Sci. China Mater. 2015, 58, 566–573.

    Article  Google Scholar 

  38. Li, Y.; Zhao, Y.; Lu, X. Y.; Zhu, Y.; Jiang, L. Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with core–sheath structures for superior microwave absorption. Nano Res. 2016, 9, 2034–2045.

    Article  Google Scholar 

  39. Wang, G. Z.; Gao, Z.; Wan, G. P.; Lin, S. W.; Yang, P.; Qin, Y. High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 2014, 7, 704–716.

    Article  Google Scholar 

  40. Song, W.-L.; Cao, M.-S.; Fan, L.-Z.; Lu, M.-M.; Li, Y.; Wang, C.-Y.; Ju, H.-F. Highly ordered porous carbon/wax composites for effective electromagnetic attenuation and shielding. Carbon 2014, 77, 130–142.

    Article  Google Scholar 

  41. Ortega, N.; Kumar, A.; Katiyar, R. S.; Rinaldi, C. Dynamic magneto-electric multiferroics PZT/CFO multilayered nanostructure. J. Mater. Sci. 2009, 44, 5127–5142.

    Article  Google Scholar 

  42. He, S.; Wang, G.-S.; Lu, C.; Liu, J.; Wen, B.; Liu, H.; Guo, L.; Cao, M.-S. Enhanced wave absorption of nanocomposites based on the synthesized complex symmetrical CuS nanostructure and poly(vinylidene fluoride). J. Mater. Chem. A 2013, 1, 4685–4692.

    Article  Google Scholar 

  43. Mandal, P. K.; Lapanik, A.; Wipf, R.; Stuehn, B.; Haase, W. Sub-hertz relaxation process in chiral smectic mixtures doped with silver nanoparticles. Appl. Phys. Lett. 2012, 100, 073112.

    Article  Google Scholar 

  44. Xu, P.; Han, X. J.; Wang, C.; Zhou, D. H.; Lv, Z. S.; Wen, A. H.; Wang, X. H.; Zhang, B. Synthesis of electromagnetic functionalized nickel/polypyrrole core/shell composites. J. Phys. Chem. B 2008, 112, 10443–10448.

    Article  Google Scholar 

  45. Qiang, R.; Du, Y. C.; Wang, Y.; Wang, N.; Tian, C. H.; Ma, J.; Xu, P.; Han, X. J. Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption. Carbon 2016, 98, 599–606.

    Article  Google Scholar 

  46. Liu, X. F.; Chen, Y. X.; Cui, X. R.; Zeng, M.; Yu, R. H.; Wang, G.-S. Flexible nanocomposites with enhanced microwave absorption properties based on Fe3O4/SiO2 nanorods and polyvinylidene fluoride. J. Mater. Chem. A 2015, 3, 12197–12204.

    Article  Google Scholar 

  47. Jian, X.; Wu, B.; Wei, Y. F.; Dou, S. X.; Wang, X. L.; He, W. D.; Mahmood, N. Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces 2016, 8, 6101–6109.

    Article  Google Scholar 

  48. Liu, J. W.; Che, R. C.; Chen, H. J.; Zhang, F.; Xia, F.; Wu, Q. S.; Wang, M. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 2012, 8, 1214–1221.

    Article  Google Scholar 

  49. Wang, G.-S.; Wu, Y.-Y.; Zhang, X.-J.; Li, Y.; Guo, L.; Cao, M.-S. Controllable synthesis of uniform ZnO nanorods and their enhanced dielectric and absorption properties. J. Mater. Chem. A 2014, 2, 8644–8651.

    Article  Google Scholar 

  50. Zhao, T. K.; Hou, C. L.; Zhang, H. Y.; Zhu, R. X.; She, S. F.; Wang, J. G.; Li, T. H.; Liu, Z. F.; Wei, B. Q. Electromagnetic wave absorbing properties of amorphous carbon nanotubes. Sci. Rep. 2014, 4, 5619.

    Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (Nos. 51472012, 51672013, 21521001, and 21431006), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang-Sheng Wang or Shu-Hong Yu.

Electronic supplementary material

12274_2016_1290_MOESM1_ESM.pdf

Binary synergistic enhancement of dielectric and microwave absorption properties: A composite of arm symmetrical PbS dendrites and polyvinylidene fluoride

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, YF., Wang, GS., Liu, L. et al. Binary synergistic enhancement of dielectric and microwave absorption properties: A composite of arm symmetrical PbS dendrites and polyvinylidene fluoride. Nano Res. 10, 284–294 (2017). https://doi.org/10.1007/s12274-016-1290-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1290-8

Keywords

Navigation