Skip to main content
Log in

Enhanced Microwave Absorption Properties of Flexible Polymer Composite Based on Hexagonal NiCo2O4 Microplates and PVDF

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Hexagonal NiCo2O4 microplates were synthesized via a facile one-pot hydrothermal method and followed by a subsequent annealing process. The complex permittivity and permeability of a NiCo2O4 and polyvinylidene fluoride (PVDF) composite were investigated over 2–18 GHz. The experiment indicated that the good microwave absorption performance of NiCo2O4@PVDF depends on dielectric loss and quarter-wavelength cancellation. Our results show that the absorption frequency bandwidth of reflection loss (RL) less than −20 dB for the NiCo2O4@PVDF composite can be measured over the frequency range of 3–15.5 GHz with an absorbing thickness that varies in the range of 1.25–5 mm. Furthermore, an optimal RL of −44.8 dB was observed at 10.7 GHz with a thickness of 1.75 mm. The loss mechanism is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.P. Sun, X.G. Liu, C. Feng, J.C. Fan, Y.H. Lv, Y.R. Wang, and C.T. Li, J. Alloys Compd. 586, 688 (2014).

    Article  Google Scholar 

  2. H.J. Wu, G.L. Wu, Y.Y. Ren, L. Yang, L.D. Wang, and X.H. Li, J. Mater. Chem. C 3, 7677 (2015).

    Article  Google Scholar 

  3. Y. Niu and X.P. Li, Inorg. Chem. Commun. 55, 25 (2015).

    Article  Google Scholar 

  4. M. Zhou, F. Lu, T.Y. Lv, X. Yang, W.W. Xia, X.S. Shen, H. He, and X.H. Zeng, J. Phys. D Appl. Phys. 48, 215305 (2015).

    Article  Google Scholar 

  5. M. Zhou, F. Lu, T.Y. Lv, X. Yang, W.W. Xia, and X.S. Shen, Mater. Lett. 159, 498 (2015).

    Article  Google Scholar 

  6. Y. Li, J. Zhang, Z.W. Liu, M.M. Liu, H.J. Lin, and R.C. Che, J. Mater. Chem. C 2, 5216 (2014).

    Article  Google Scholar 

  7. F.X. Ma, X.Y. Sun, K. He, J.T. Jiang, L. Zhen, and C.Y. Xu, J. Magn. Magn. Mater. 361, 161 (2014).

    Article  Google Scholar 

  8. L.S. Fu, J.T. Jian, C.Y. Xu, and L. Zhen, CrystEngComm 14, 6827 (2012).

    Article  Google Scholar 

  9. Y. Yang, C. Xu, Y. Xia, T. Wang, and F. Li, J. Alloys Compd. 493, 549 (2010).

    Article  Google Scholar 

  10. G.Q. Zhang and X.W.D. Lou, Adv. Mater. 25, 976 (2013).

    Article  Google Scholar 

  11. L. Qian, L. Gu, L. Yang, H.Y. Yuan, and D. Xiao, Nanoscale 5, 7388 (2013).

    Article  Google Scholar 

  12. L.F. Hu, L.M. Wu, M.Y. Liao, X.H. Hu, and X.S. Fang, Adv. Fun. Mater 22, 998 (2012).

    Article  Google Scholar 

  13. J. Zhan, Y.L. Yao, C.F. Zhang, and C.J. Li, J. Alloys Compd. 585, 240 (2014).

    Article  Google Scholar 

  14. N. Joseph and M.T. Sebastian, Mater. Lett. 90, 64–67 (2013).

    Article  Google Scholar 

  15. X.J. Zhang, G.S. Wang, W.Q. Cao, Y.Z. Wei, J.F. Liang, L. Guo, M.S. Cao, and A.C.S. Appl, Mater. Interfaces 6, 7471 (2014).

    Article  Google Scholar 

  16. G.S. Wang, Y.Y. Wu, X.J. Zhang, Y. Li, L. Guo, and M.S. Cao, J. Mater. Chem. A 2, 8644 (2014).

    Article  Google Scholar 

  17. N. Joseph, S.K. Singh, R.K. Sirugudu, V.R.K. Murthy, S. Ananthakumar, and M.T. Sebastian, Mater. Res. Bull. 48, 1681–1687 (2013).

    Article  Google Scholar 

  18. Yu.E. Roginskaya, O.V. Morozova, E.N. Lubnin, Yu.E. Ulitina, G.V. Lopukhova, and S. Trasatti, Langmuir 13, 4621 (1997).

    Article  Google Scholar 

  19. J.-G. Kim, D.L. Pugmire, D. Battaglia, and M.A. Langel, Appl. Surf. Sci. 165, 70 (2000).

    Article  Google Scholar 

  20. Y. Lei, J. Li, Y.Y. Wang, L. Gu, Y.F. Chang, H.Y. Yuan, and D. Xiao, ACS Appl. Mater. Interfaces 6, 1773 (2014).

    Article  Google Scholar 

  21. H. Luo, R.Z. Gong, X. Wang, Y. Nie, Y.J. Chen, and V.G. Harris, J. Alloys Compd. 646, 345 (2015).

    Article  Google Scholar 

  22. L. Chen, C.H. Lu, Y. Lu, Z.G. Fang, Y.R. Ni, and Z.Z. Xu, RSC Adv. 3, 3967 (2013).

    Article  Google Scholar 

  23. X.M. Meng, X.J. Zhang, C. Lu, Y.F. Pan, and G.S. Wang, J. Mater. Chem. A 2, 18725 (2014).

    Article  Google Scholar 

  24. V.T. Truong, S.Z. Riddell, and R.F. Muscat, J. Mater. Sci. 33, 4971 (1998).

    Article  Google Scholar 

  25. Y. Fujishiro, K. Hamamoto, O. Shino, S. Katayama, and M. Awano, J. Mater. Sci. 15, 769 (2004).

    Google Scholar 

  26. L.Z. Wu, J. Ding, H.B. Jiang, L.F. Chen, and C.K. Ong, J. Magn. Magn. Mater. 285, 233 (2005).

    Article  Google Scholar 

  27. L. Qiao, X.L. Li, T. Wang, L.Y. Tang, and F.S. Li, J. Magn. Magn. Mater. 393, 347 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Luo or Xian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, H., Wang, X., Song, K. et al. Enhanced Microwave Absorption Properties of Flexible Polymer Composite Based on Hexagonal NiCo2O4 Microplates and PVDF. J. Electron. Mater. 45, 4202–4207 (2016). https://doi.org/10.1007/s11664-016-4632-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4632-0

Keywords

Navigation