Skip to main content
Log in

Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe3O4/Fe nanorings

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report the preparation of nanocomposites of reduced graphene oxide with embedded Fe3O4/Fe nanorings (FeNR@rGO) by chemical hydrothermal growth. We illustrate the use of these nanocomposites as novel electromagnetic wave absorbing materials. The electromagnetic wave absorption properties of the nanocomposites with different compositions were investigated. The preparation procedure and nanocomposite composition were optimized to achieve the best electromagnetic wave absorption properties. Nanocomposites with a GO:α-Fe2O3 mass ratio of 1:1 prepared by annealing in H2/Ar for 3 h exhibited the best properties. This nanocomposite sample (thickness = 4.0 mm) showed a minimum reflectivity of–23.09 dB at 9.16 GHz. The band range was 7.4–11.3 GHz when the reflectivity was less than–10 dB and the spectrum width was up to 3.9 GHz. These figures of merit are typically of the same order of magnitude when compared to the values shown by traditional ferric oxide materials. However, FeNR@rGO can be readily applied as a microwave absorbing material because the production method we propose is highly compatible with mass production standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun, D. P.; Zou, Q.; Qian, G. Q.; Sun, C.; Jiang, W.; Li, F. S. Controlled synthesis of porous Fe3O4-decorated graphene with extraordinary electromagnetic wave absorption properties. Acta Mater. 2013, 61, 5829–5834.

    Article  Google Scholar 

  2. Qin, F. X.; Peng, H.-X. Ferromagnetic microwires enabled multifunctional composite materials. Prog. Mater. Sci. 2013, 58, 183–259.

    Article  Google Scholar 

  3. Ni, Q. Q.; Zhu, Y. F.; Yu, L. J.; Fu, Y. Q. One-dimensional carbon nanotube@barium titanate@polyaniline multiheterostructures for microwave absorbing application. Nanoscale Res. Lett. 2015, 10, 174.

    Article  Google Scholar 

  4. Chang, W.-C.; Chen, H.-S.; Yu, W.-C. Flower-shaped ZnO nanocrystallite aggregates synthesized through a templatefree aqueous solution method for dye-sensitized solar cells. Appl. Phys. Lett. 2015, 106, 013908.

    Article  Google Scholar 

  5. Xie, S.; Guo, X. N.; Jin, G. Q.; Guo, X. Y. Carbon coated Co-SiC nanocomposite with high-performance microwave absorption. Phys. Chem. Chem. Phys. 2013, 15, 16104–16110.

    Article  Google Scholar 

  6. Liu, P. B.; Huang, Y.; Sun, X. Excellent electromagnetic absorption properties of poly(3,4-ethylenedioxythiophene)-reduced graphene oxide-Co3O4 composites prepared by a hydrothermal method. ACS Appl. Mater. Interfaces 2013, 5, 12355–12360.

    Article  Google Scholar 

  7. Kumaran, R.; Alagar, M.; Dinesh Kumar, S.; Subramanian, V.; Dinakaran, K. Ag induced electromagnetic interference shielding of Ag-graphite/PVDF flexible nanocomposites thinfilms. Appl. Phys. Lett. 2015, 107, 113107.

    Article  Google Scholar 

  8. Das, S.; Chandra Nayak, G.; Sahu, S. K.; Oraon, R. Development of FeCoB/graphene oxide based microwave absorbing materials for X-band region. J. Magn. Magn. Mater. 2015, 384, 224–228.

    Article  Google Scholar 

  9. Kang, Y.; Chu, Z. Y.; Zhang, D. J.; Li, G. Y.; Jiang, Z. H.; Cheng, H. F.; Li, X. D. Incorporate boron and nitrogen into graphene to make BCN hybrid nanosheets with enhanced microwave absorbing properties. Carbon 2013, 61, 200–208.

    Article  Google Scholar 

  10. Zhao, B.; Shao, G.; Fan, B. B.; Zhao, W. Y.; Zhang, R. Fabrication and enhanced microwave absorption properties of Al2O3 nanoflake-coated Ni core–shell composite microspheres. RSC Adv. 2014, 4, 57424–57429.

    Article  Google Scholar 

  11. Zhang, L.; Zhang, X. H.; Zhang, G. J.; Zhang, Z.; Liu, S.; Li, P. F.; Liao, Q. L.; Zhao, Y. G.; Zhang, Y. Investigation on the optimization, design and microwave absorption properties of reduced graphene oxide/tetrapod-like ZnO composites. RSC Adv. 2015, 5, 10197–10203.

    Article  Google Scholar 

  12. Guo, Z.; Lee, S. E.; Kim, H.; Park, S.; Hahn, H. T.; Karki, A. B.; Young, D. P. Fabrication, characterization and microwave properties of polyurethane nanocomposites reinforced with iron oxide and barium titanate nanoparticles. Acta Mater. 2009, 57, 267–277.

    Article  Google Scholar 

  13. Wang, F. L.; Liu, J. R.; Kong, J.; Zhang, Z. J.; Wang, X. Z.; Itoh, M.; Machida, K. Template free synthesis and electromagnetic wave absorption properties of monodispersed hollow magnetite nano-spheres. J. Mater. Chem. 2011, 21, 4314–4320.

    Article  Google Scholar 

  14. Chiu, S. C.; Yu, H. C.; Li, Y. Y. High electromagnetic wave absorption performance of silicon carbide nanowires in the Gigahertz range. J. Phys. Chem. C 2010, 114, 1947–1952.

    Article  Google Scholar 

  15. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  16. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Google Scholar 

  17. Wang, C.; Han, X. J.; Xu, P.; Zhang, X. L.; Du, Y. C.; Hu, S. R.; Wang, J. Y.; Wang, X. H. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl. Phys. Lett. 2011, 98, 072906.

    Article  Google Scholar 

  18. Yan, D.-X.; Pang, H.; Li, B.; Vajtai, R.; Xu, L.; Ren, P.-G.; Wang, J.-H.; Li, Z.-M. Structured reduced graphene oxide/ polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 2015, 25, 559–566.

    Article  Google Scholar 

  19. Shen, B.; Zhai, W. T.; Tao, M. M.; Ling, J. Q.; Zheng, W. G. Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. Interfaces 2013, 5, 11383–11391.

    Article  Google Scholar 

  20. Liu, Q. C.; Zi, Z. F.; Zhang, M.; Pang, A. B.; Dai, J. M.; Sun, Y. P. Enhanced microwave absorption properties of carbonyl iron/Fe3O4 composites synthesized by a simple hydrothermal method. J. Alloy. Compd 2013, 561, 65–70.

    Article  Google Scholar 

  21. Wang, T. S.; Liu, Z. H.; Lu, M. M.; Wen, B.; Ouyang, Q. Y.; Chen, Y. J.; Zhu, C. L.; Gao, P.; Li, C. Y.; Cao, M. S. et al. Graphene–Fe3O4 nanohybrids: Synthesis and excellent electromagnetic absorption properties. J. Appl. Phys. 2013, 113, 024314.

    Article  Google Scholar 

  22. Ren, Y. L.; Zhu, C. L.; Zhang, S.; Li, C. Y.; Chen, Y. J.; Gao, P.; Yang, P. P.; Ouyang, Q. Y. Three-dimensional SiO2@Fe3O4 core/shell nanorod array/graphene architecture: Synthesis and electromagnetic absorption properties. Nanoscale 2013, 5, 12296–12303.

    Article  Google Scholar 

  23. Wang, L.; Huang, Y.; Sun, X.; Huang, H. J.; Liu, P. B.; Zong, M.; Wang, Y. Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures. Nanoscale 2014, 6, 3157–3164.

    Article  Google Scholar 

  24. Wang, L.; Huang, Y.; Ding, X.; Liu, P. B.; Zong, M.; Sun, X.; Wang, Y.; Zhao, Y. Supraparamagnetic quaternary nanocomposites of graphene@Fe3O4@SiO2@SnO2: Synthesis and enhanced electromagnetic absorption properties. Mater. Lett. 2013, 109, 146–150.

    Article  Google Scholar 

  25. Jia, C. J.; Sun, L. D.; Luo, F.; Han, X. D.; Heyderman, L. J.; Yan, Z. G.; Yan, C. H.; Zheng, K.; Zhang, Z.; Takano, M. et al. Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. J. Am. Chem. Soc. 2008, 130, 16968–16977.

    Article  Google Scholar 

  26. Zhang, H.; Xie, A. J.; Wang, C. P.; Wang, H. S.; Shen, Y. H.; Tian, X. Y. Novel rGO/α-Fe2O3 composite hydrogel: Synthesis, characterization and high performance of electromagnetic wave absorption. J. Mater. Chem. A 2013, 1, 8547–8552.

    Article  Google Scholar 

  27. Wang, T. H.; Li, Y. F.; Wang, L.; Liu, C.; Geng, S.; Jia, X. L.; Yang, F.; Zhang, L. Q.; Liu, L. P.; You, B. et al. Synthesis of graphene/a-Fe2O3 composites with excellent electromagnetic wave absorption properties. RSC Adv. 2015, 5, 60114–60120.

    Article  Google Scholar 

  28. Huo, Y.; Zhu, Y. G.; Xie, J.; Cao, G. S.; Zhu, T. J.; Zhao, X. B.; Zhang, S. C. Controllable synthesis of hollow α-Fe2O3 nanostructures, their growth mechanism, and the morphologyreserved conversion to magnetic Fe3O4/C nanocomposites. RSC Adv. 2013, 3, 19097–19103.

    Article  Google Scholar 

  29. Tong, G. X.; Liu, Y.; Cui, T. T.; Li, Y.; Zhao, Y. T.; Guan, J. G. Tunable dielectric properties and excellent microwave absorbing properties of elliptical Fe3O4 nanorings. Appl. Phys. Lett. 2016, 108, 072905.

    Article  Google Scholar 

  30. Wang, L. L.; Liang, J. W.; Zhu, Y. C.; Mei, T.; Zhang, X.; Yang, Q.; Qian, Y. T. Synthesis of Fe3O4@C core–shell nanorings and their enhanced electrochemical performance for lithium-ion batteries. Nanoscale 2013, 5, 3627–3631.

    Article  Google Scholar 

  31. Guan, P. F.; Zhang, X. F.; Guo, J. J. Assembled Fe3O4 nanoparticles on graphene for enhanced electromagnetic wave losses. Appl. Phys. Lett. 2012, 101, 153108.

    Article  Google Scholar 

  32. Wang, H. G.; Ma, D. L.; Huang, X. L.; Huang, Y.; Zhang, X. B. General and controllable synthesis strategy of metal oxide/TiO2 hierarchical heterostructures with improved lithium-ion battery performance. Sci. Rep. 2012, 2, 701.

    Google Scholar 

  33. Chen, Y. J.; Xiao, G.; Wang, T. S.; Ouyang, Q. Y.; Qi, L. H.; Ma, Y.; Gao, P.; Zhu, C. L.; Cao, M. S.; Jin, H. B. Porous Fe3O4/carbon core/shell nanorods: Synthesis and electromagnetic properties. J. Phys. Chem. C 2011, 115, 13603–13608.

    Article  Google Scholar 

  34. Chen, Y.-J.; Gao, P.; Wang, R.-X.; Zhu, C.-L.; Wang, L.-J.; Cao, M.-S.; Jin, H.-B. Porous Fe3O4/SnO2 core/shell nanorods: Synthesis and electromagnetic properties. J. Phys. Chem. C 2009, 113, 10061–10064.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingliang Liao or Yue Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Zhang, L., Liao, Q. et al. Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe3O4/Fe nanorings. Nano Res. 9, 2018–2025 (2016). https://doi.org/10.1007/s12274-016-1092-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1092-z

Keywords

Navigation