Skip to main content
Log in

Self-supported Ni6MnO8 3D mesoporous nanosheet arrays with ultrahigh lithium storage properties and conversion mechanism by in-situ XAFS

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Murdochite-type Ni6MnO8 three-dimensional mesoporous nanosheet arrays grown on carbon cloth (NMO-SA/CC) are synthesized using an in-situ growth strategy. As self-supported binder-free anodes for LIBs, the NMO-SA/CC hierarchical nanostructures exhibit ultrahigh capacity, excellent cycling stability, and good rate capability. The excellent lithium storage performance can be ascribed to the perfect electrical contact between NMO-SA and CC. The mesopores in the thin nanosheet can maximize the electrode contact with the electrolyte by decreasing the Li+ diffusion path. Moreover, these effects relieve the pulverization and agglomeration that originate from the large volume variations during the Li+ intercalation/deintercalation cycles. The in-situ X-ray absorption fine structure (XAFS) spectrum recorded during the initial lithiation/delithiation processes reveals the conversion reaction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, S. L.; Yin, H. J.; Du, L.; He, L. C.; Zhao, K.; Chang, L.; Yin, G. P.; Zhao, H. J.; Liu, S. Q.; Tang, Z. Y. Carbonized nanoscale metal–organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 2014, 8, 12660–12668.

    Article  Google Scholar 

  2. Xia, Y. S.; Nguyen, T. D.; Yang, M.; Lee, B.; Santos, A.; Podsiadlo, P.; Tang, Z. Y.; Glotzer, S. C.; Kotov, N. A. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nat. Nanotechnol. 2011, 6, 580–587.

    Article  Google Scholar 

  3. Zhao, S. L.; Yin, H. J.; Du, L.; Yin, G. P.; Tang, Z. Y.; Liu, S. Q. Three dimensional N-doped graphene/PtRu nanoparticle hybrids as high performance anode for direct methanol fuel cells. J. Mater. Chem. A 2014, 2, 3719–3724.

    Article  Google Scholar 

  4. Zhao, S. L.; Li, Y. C.; Yin, H. J.; Liu, Z. Z.; Luan, E. X.; Zhao, F.; Tang, Z. Y.; Liu, S. Q. Three-dimensional graphene/Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells. Sci. Adv. 2015, 1, e1500372.

    Article  Google Scholar 

  5. Wang, X. F.; Lu, X. H.; Liu, B.; Chen, D.; Tong, Y. X.; Shen, G. Z. Flexible energy-storage devices: Design consideration and recent progress. Adv. Mater. 2014, 26, 4763–4782.

    Article  Google Scholar 

  6. Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Article  Google Scholar 

  7. Zhao, D. D.; Wang, L.; Yu, P.; Zhao, L.; Tian, C. G.; Zhou, W.; Zhang, L.; Fu, H. G. From graphite to porous graphene-like nanosheets for high rate lithium-ion batteries. Nano Res. 2015, 8, 2998–3010.

    Article  Google Scholar 

  8. Liu, J.; Banis, M. N.; Sun, Q.; Lushington, A.; Li, R. Y.; Sham, T.-K.; Sun, X. L. Rational design of atomic-layerdeposited LiFePO4 as a high-performance cathode for lithium-ion batteries. Adv. Mater. 2014, 26, 6472–6477.

    Article  Google Scholar 

  9. Scott, I. D.; Jung, Y. S.; Cavanagh, A. S.; Yan, Y. F.; Dillon, A. C.; George, S. M.; Lee, S.-H. Ultrathin coatings on nano-LiCoO2 for Li-ion vehicular applications. Nano Lett. 2011, 11, 414–418.

    Article  Google Scholar 

  10. Xiao, X. L.; Lu, J.; Li, Y. D. LiMn2O4 microspheres: Synthesis, characterization and use as a cathode in lithium ion batteries. Nano Res. 2010, 3, 733–737.

    Article  Google Scholar 

  11. Yin, H. J.; Zhao, S. L.; Wan, J. W.; Tang, H. J.; Chang L.; He, L. C.; Zhao, H. J.; Gao, Y.; Tang, Z. Y. Three-dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water. Adv. Mater. 2013, 25, 6270–6276.

    Article  Google Scholar 

  12. Nguyen, H. T.; Yao, F.; Zamfir, M. R.; Biswas, C.; So, K. P.; Lee, Y. H.; Kim, S. M.; Cha, S. N.; Kim, J. M.; Pribat, D. Highly interconnected Si nanowires for improved stability Li-ion battery anodes. Adv. Energy Mater. 2011, 1, 1154–1161.

    Article  Google Scholar 

  13. Lee, C. W.; Seo, S.-D.; Kim, D. W.; Park, S.; Jin, K.; Kim, D.-W.; Hong, K. S. Heteroepitaxial growth of ZnO nanosheet bands on ZnCo2O4 submicron rods toward high-performance Li ion battery electrodes. Nano Res. 2013, 6, 348–355.

    Article  Google Scholar 

  14. Yin, Z. G.; Xiao, Y.; Wang, X.; Wang, W.; Zhao, D.; Cao, M. H. MoV2O8 nanostructures: Controlled synthesis and lithium storage mechanism. Nanoscale 2016, 8, 508–516.

    Article  Google Scholar 

  15. Zhao, Y.; Li, X. F.; Yan, B.; Xiong, D. B.; Li, D. J.; Lawes, S.; Sun, X. L. Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv. Energy Mater. 2016, 6, 1502175.

    Article  Google Scholar 

  16. Shen, L. F.; Yu, L.; Yu, X.-Y.; Zhang, X. G.; Lou, X. W. Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem., Int. Ed. 2015, 54, 1868–1872.

    Article  Google Scholar 

  17. Wu, H. B.; Chen, J. S.; Hng, H. H.; Lou, X. W. Nanostructured metal oxide-based materials as advanced anodes for lithiumion batteries. Nanoscale 2012, 4, 2526–2542.

    Article  Google Scholar 

  18. Kong, D. Z.; Luo, J. S.; Wang, Y. L.; Ren W. N.; Yu, T.; Luo, Y. S.; Yang, Y. P.; Cheng, C. W. Three-dimensional Co3O4@MnO2 hierarchical nanoneedle arrays: Morphology control and electrochemical energy storage. Adv. Funct. Mater. 2014, 24, 3815–3826.

    Article  Google Scholar 

  19. Yin, L. W.; Zhang, Z. W.; Li, Z. Q.; Hao, F. B.; Li, Q.; Wang, C. X.; Fan, R. H.; Qi, Y. X. Spinel ZnMn2O4 nanocrystal-anchored 3D hierarchical carbon aerogel hybrids as anode materials for lithium ion batteries. Adv. Funct. Mater. 2014, 24, 4176–4185.

    Article  Google Scholar 

  20. Wang, Z. Y.; Zhou, L.; Lou X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903–1911.

    Article  Google Scholar 

  21. Zhang, G. Q.; Lou, X. W. General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv. Mater. 2013, 25, 976–979.

    Article  Google Scholar 

  22. Sun, H. T.; Xin, G. Q.; Hu, T.; Yu, M. P.; Shao, D. L.; Sun, X.; Lian, J. High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nat. Commun. 2014, 5, 4526.

    Google Scholar 

  23. Zhang, G.; Liu, H. J.; Qu, J. H.; Li, J. H. Two-dimensional layered MoS2: Rational design, properties and electrochemical applications. Energy Environ. Sci. 2016, 9, 1190–1209.

    Article  Google Scholar 

  24. Wang, H.; Feng, H. B.; Li, J. H. Graphene and graphenelike layered transition metal dichalcogenides in energy conversion and storage. Small 2014, 10, 2165–2181.

    Article  Google Scholar 

  25. Zhang, G. H.; Hou, S. C.; Zhang, H.; Zeng, W.; Yan, F. L.; Li, C. C.; Duan, H. G. High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode. Adv. Mater. 2015, 27, 2400–2405.

    Article  Google Scholar 

  26. Yuan, C. Z.; Yang, L.; Hou, L. R.; Shen, L. F.; Zhang, X. G.; Lou, X. W. Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy Environ. Sci. 2012, 5, 7883–7887.

    Article  Google Scholar 

  27. Ji, J. Y.; Li, Y.; Peng, W. C.; Zhang, G. L.; Zhang, F. B.; Fan, X. B. Advanced graphene-based binder-free electrodes for high-performance energy storage. Adv. Mater. 2015, 27, 5264–5279.

    Article  Google Scholar 

  28. Wei, W.; Wang, Z. H.; Liu, Z.; Liu, Y.; He, L.; Chen, D. Z.; Umar, A.; Guo, L.; Li, J. H. Metal oxide hollow nanostructures: Fabrication and Li storage performance. J. Power Sources, 2013, 238, 376–387.

    Article  Google Scholar 

  29. Hu, H.; Guan, B. Y.; Xia, B. Y.; Lou, X. W. Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties. J. Am. Chem. Soc. 2015, 137, 5590–5595.

    Article  Google Scholar 

  30. Yuan, C. Z.; Wu, H. B.; Xie, Y.; Lou, X. W. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem., Int. Ed. 2014, 53, 1488–1504.

    Article  Google Scholar 

  31. Liu, B.; Zhang J.; Wang, X. F.; Chen, G.; Chen, D.; Zhou, C. W.; Shen, G. Z. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 2012, 12, 3005–3011.

    Article  Google Scholar 

  32. Kim, S. W.; Lee, H. W.; Muralidharan, P.; Seo, D.-H.; Yoon, W.-S.; Kim, D. K.; Kang, K. Electrochemical performance and ex situ analysis of ZnMn2O4 nanowires as anode materials for lithium rechargeable batteries. Nano Res. 2011, 4, 505–510.

    Article  Google Scholar 

  33. Jiang, H.; Hu, Y. J.; Guo, S. J.; Yan, C. Y.; Lee, P. S.; Li, C. Z. Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life Li-ion batteries. ACS Nano 2014, 8, 6038–6046.

    Article  Google Scholar 

  34. Kang, W. P.; Tang, Y. B.; Li, W. Y.; Yang, X.; Xue, H. T.; Yang, Q. D.; Lee, C.-S. High interfacial storage capability of porous NiMn2O4/C hierarchical tremella-like nanostructures as the lithium ion battery anode. Nanoscale 2015, 7, 225–231.

    Article  Google Scholar 

  35. Taguchi, H.; Tahara, S.; Okumura, M.; Hirota, K. Synthesis of murdochite-type Ni6MnO8 with variable specific surface areas and the application in methane oxidation. J. Solid State Chem. 2014, 215, 300–304.

    Article  Google Scholar 

  36. Feltz, A.; Töpfer, J. Investigations on electronically conducting oxide systems XXVI. Preparation and properties of Ni6MnO8 and NiMnO3-δ (δ≈0.02). J. Alloys Compds. 1993, 196, 75–79.

    Article  Google Scholar 

  37. Liu, J. L.; Wang, J.; Ku, Z. L.; Wang, H. H.; Chen, S.; Zhang, L. L.; Lin, J. Y.; Shen, Z. X. Aqueous rechargeable alkaline Co x Ni2–x S2 /TiO2 battery. ACS Nano 2016, 10, 1007–1016.

    Article  Google Scholar 

  38. Zhang, G. Q.; Yu, L.; Wu, H. B.; Hoster, H. E.; Lou, X. W. Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv. Mater. 2012, 24, 4609–4613.

    Article  Google Scholar 

  39. Zhou, W.; Lin, L. J; Wang, W. J.; Zhang, L. L.; Wu, Q.; Li, J. H.; Guo, L. Hierarchial mesoporous hematite with “electron-transport channels” and its improved performances in photocatalysis and lithium ion batteries. J. Phys. Chem. C 2011, 115, 7126–7133.

    Article  Google Scholar 

  40. McSweeney, W.; Geaney, H.; O’Dwyer, C. Metal-assisted chemical etching of silicon and the behavior of nanoscale silicon materials as Li-ion battery anodes. Nano Res. 2015, 8, 1395–1442.

    Article  Google Scholar 

  41. Luo, J. S.; Xia, X. H.; Luo, Y. S.; Guan, C.; Liu, J. L.; Qi, X. Y.; Ng, C. F.; Yu, T.; Zhang, H.; Fan, H. J. Rationally designed hierarchical TiO2@Fe2O3 hollow nanostructures for improved lithium ion storage. Adv. Energy Mater. 2013, 3, 737–743.

    Article  Google Scholar 

  42. Wu, H.; Yu, G. H.; Pan, L. J.; Liu, N. A.; McDowell, M. T.; Bao, Z. A.; Cui, Y. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 2013, 4, 1943.

    Google Scholar 

  43. Su, X.; Wu, Q. L.; Li, J. C.; Xiao, X. C.; Lott, A.; Lu, W. Q.; Sheldon, B. W.; Wu, J. Silicon-based nanomaterials for lithium-ion batteries: A review. Adv. Energy Mater. 2014, 4, 1300882.

    Article  Google Scholar 

  44. Fan, Z. Y.; Wang, B. R.; Xi, Y. X.; Xu, X.; Li, M. Y.; Li, J.; Coxon, P.; Cheng, D. D.; Gao, G. X.; Xiao, C. H. et al. A NiCo2O4 nanosheet-mesoporous carbon composite electrode for enhanced reversible lithium storage. Carbon 2016, 99, 633–641.

    Article  Google Scholar 

  45. Zhou, L.; Zhao, D. Y.; Lou, X. W. Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv. Mater. 2012, 24, 745–748.

    Article  Google Scholar 

  46. Alcántara, R.; Jaraba, M.; Lavela, P.; Tirado, J. L. New NixMg6-x MnO8 mixed oxides as active materials for the negative electrode of lithium-ion cells. J Solid State Chem. 2002, 166, 330–335.

    Article  Google Scholar 

  47. Latorre-Sanchez, M.; Atienzar, P.; Abellán, G.; Puche, M.; Fornés, V.; Ribera, A.; García, H. The synthesis of a hybrid graphene-nickel/manganese mixed oxide and its performance in lithium-ion batteries. Carbon 2012, 50, 518–525.

    Article  Google Scholar 

  48. Su, H.; Xu, Y.-F.; Feng, S.-C.; Wu, Z.-G.; Sun, X.-P.; Shen, C.-H.; Wang, J. Q.; Li, J.-T.; Huang, L.; Sun, S.-G. Hierarchical Mn2O3 hollow microspheres as anode material of lithium ion battery and its conversion reaction mechanism investigated by XANES. ACS Appl. Mater. Interfaces 2015, 7, 8488–8494.

    Article  Google Scholar 

  49. Rana, J.; Glatthaar, S.; Gesswein, H.; Sharma, N.; Binder, J. R.; Chernikov, R.; Schumacher, G.; Banhart, J. Local structural changes in LiMn1.5Ni0.5O4 spinel cathode material for lithium-ion batteries. J. Power Sources 2014, 255, 439–449.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of this research by the National Natural Science Foundation of China (Nos. 21371053, 21376065, 21401048, and 21571054), the Postdoctoral Science Foundation of Heilongjiang Province (No. LBH-TZ0519), Harbin Science and Technology Innovation Talents Research Foundation (No. 2015RAQXJ057), Innovative Research Project of Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Wang or Honggang Fu.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

12274_2016_1285_MOESM1_ESM.pdf

Self-supported Ni6MnO8 3D mesoporous nanosheet arrays with ultrahigh lithium storage properties and conversion mechanism by in-situ XAFS

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Yu, P., Wang, L. et al. Self-supported Ni6MnO8 3D mesoporous nanosheet arrays with ultrahigh lithium storage properties and conversion mechanism by in-situ XAFS. Nano Res. 10, 263–275 (2017). https://doi.org/10.1007/s12274-016-1285-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1285-5

Keywords

Navigation