Skip to main content
Log in

LiCoO2-catalyzed electrochemical oxidation of Li2CO3

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium carbonate (Li2CO3) is very common in various types of lithium (Li) batteries. As an insulating by-product of the oxygen reduction reaction on the cathode of a Li–air battery, it cannot be decomposed below 4.75 V (vs. Li+/Li) during recharge and leads to a large polarization, low coulombic efficiency, and low energy conversion efficiency of the battery. On the other hand, more than 10% of the Li ions from the cathode material are consumed during chemical formation of a Li-ion battery, resulting in low coulombic efficiency and/or energy density. Consequently, lithium compensation becomes essential to realize Li-ion batteries with a higher energy density and longer cycle life. Therefore, reducing the oxidation potential of Li2CO3 is significantly important. To address these issues, we show that the addition of nanoscaled LiCoO2 can effectively lower this potential to 4.25 V. On the basis of physical characterization and electrochemical evaluation, we propose the oxidization mechanism of Li2CO3. These findings will help to decrease the polarization of Li–air batteries and provide an effective strategy for efficient Li compensation for Li-ion batteries, which can significantly improve their energy density and increase their energy conversion efficiency and cycle life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu, X. F.; Zhu, Z. Q.; Cheng, F. Y.; Tao, Z. L.; Chen, J. Micronano structured Ni-MOFs as high-performance cathode catalyst for rechargeable Li-O2 batteries. Nanoscale 2015, 7, 11833–11840.

    Article  Google Scholar 

  2. Armand, M.; Tarascon, J.-M. Building better batteries. Nature 2008, 451, 652–657.

    Article  Google Scholar 

  3. Zhang, K.; Han, X. P.; Hu, Z.; Zhang, X. L.; Tao, Z. L.; Chen, J. Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem. Soc. Rev. 2015, 44, 699–728.

    Article  Google Scholar 

  4. Lu, J.; Li, L.; Park, J. B.; Sun, Y. K.; Wu, F.; Amine, K. Aprotic and aqueous Li-O2 batteries. Chem. Rev. 2014, 114, 5611–5640.

    Article  Google Scholar 

  5. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

    Article  Google Scholar 

  6. Zhai, D. Y.; Wang, H.-H.; Lau, K. C.; Gao, J.; Redfern, P. C.; Kang, F. Y.; Li, B. H.; Indacochea, E.; Das, U.; Sun, H.-H. et al. Raman evidence for late stage disproportionation in a Li-O2 battery. J. Phys. Chem. Lett. 2014, 5, 2705–2710.

    Article  Google Scholar 

  7. Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. Lithium-air battery: Promise and challenges. J. Phys. Chem. Lett. 2010, 1, 2193–2203.

    Article  Google Scholar 

  8. McCloskey, B. D.; Speidel, A.; Scheffler, R.; Miller, D. C.; Viswanathan, V.; Hummelshø j, J. S.; Nø rskov, J. K.; Luntz, A. C. Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries. J. Phys. Chem. Lett. 2012, 3, 997–1001.

    Article  Google Scholar 

  9. Ottakam Thotiyl, M. M.; Freunberger, S. A.; Peng, Z. Q.; Bruce, P. G. The carbon electrode in nonaqueous Li-O2 cells. J. Am. Chem. Soc. 2013, 135, 494–500.

    Article  Google Scholar 

  10. Zhang, T.; Zhou, H. S. A reversible long-life lithium-air battery in ambient air. Nat. Commun. 2013, 4, 1817.

    Google Scholar 

  11. Lim, H. K.; Lim, H. D.; Park, K. Y.; Seo, D. H.; Gwon, H.; Hong, J.; Goddard, W. A.; Kim, H.; Kang, K. Toward a lithium-"air" battery: The effect of CO2 on the chemistry of a lithium-oxygen cell. J. Am. Chem. Soc. 2013, 135, 9733–9742.

    Article  Google Scholar 

  12. Takechi, K.; Shiga, T.; Asaoka, T. A Li-O2/CO2 battery. Chem. Commun. 2011, 47, 3463–3465.

    Google Scholar 

  13. Ling, C.; Zhang, R. G.; Takechi, K.; Mizuno, F. Intrinsic barrier to electrochemically decompose Li2CO3 and LiOH. J. Phys. Chem. C 2014, 118, 26591–26598.

    Article  Google Scholar 

  14. Yang, S. X.; He, P.; Zhou, H. S. Exploring the electrochemical reaction mechanism of carbonate oxidation in Li–air/CO2 battery through tracing missing oxygen. Energy Environ. Sci. 2016, 9, 1650–1654.

    Article  Google Scholar 

  15. Gowda, S. R.; Brunet, A.; Wallraff, G. M.; McCloskey, B. D. Implications of CO2 contamination in rechargeable nonaqueous Li-O2 batteries. J. Phys. Chem. Lett. 2013, 4, 276–279.

    Article  Google Scholar 

  16. Lu, Y.-C.; Crumlin, E. J.; Carney, T. J.; Baggetto, L.; Veith, G. M.; Dudney, N. J.; Liu, Z.; Shao-Horn, Y. Influence of hydrocarbon and CO2 on the reversibility of Li-O2 chemistry using in situ ambient pressure X-ray photoelectron spectroscopy. J. Phys. Chem. C 2013, 117, 25948–25954.

    Article  Google Scholar 

  17. Verma, P.; Maire, P.; Novák, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 2010, 55, 6332–6341.

    Article  Google Scholar 

  18. Hagelin-Weaver, H. A. E.; Hoflund, G. B.; Minahan, D. A.; Salaita, G. N. Electron energy loss spectroscopic investigation of Co metal, CoO, and Co3O4 before and after Ar+ bombardment. Appl. Surf. Sci. 2004, 235, 420–448.

    Article  Google Scholar 

  19. Tian, N.; Hua, C. X.; Wang, Z. X.; Chen, L. Q. Reversible reduction of Li2CO3. J. Mater. Chem. A 2015, 3, 14173–14177.

    Article  Google Scholar 

  20. Lu, Z. Y.; Wang, H. T.; Kong, D. S.; Yan, K.; Hsu, P. C.; Zheng, G. Y.; Yao, H. B.; Liang, Z.; Sun, X. M.; Cui, Y. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nat. Commun. 2014, 5, 4345.

    Google Scholar 

  21. Maiyalagan, T.; Jarvis, K. A.; Therese, S.; Ferreira, P. J.; Manthiram, A. Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat. Commun. 2014, 5, 3949.

    Article  Google Scholar 

  22. Zhu, Z.; Kushima, A.; Yin, Z. Y.; Qi, L.; Amine, K.; Lu, J.; Li, J. Anion-redox nanolithia cathodes for Li-ion batteries. Nat. Energy 2016, 1, 16111.

    Article  Google Scholar 

  23. Okuoka, S.; Ogasawara, Y.; Suga, Y.; Hibino, M.; Kudo, T.; Ono, H.; Yonehara, K.; Sumida, Y.; Yamada, Y.; Yamada, A. et al. A new sealed lithium-peroxide battery with a Co-doped Li2O cathode in a superconcentrated lithium bis(fluorosulfonyl)amide electrolyte. Sci. Rep. 2014, 4, 5684.

    Google Scholar 

  24. Kang, S. G.; Kang, S. Y.; Ryu, K. S.; Chang, S. H. Electrochemical and structural properties of HT-LiCoO2 and LT-LiCoO2 prepared by the citrate sol-gel method. Solid State Ionics 1999, 120, 155–161.

    Article  Google Scholar 

  25. Wang, R.; Yu, X. Q.; Bai, J. M.; Li, H.; Huang, X. J.; Chen, L. Q.; Yang, X. Q. Electrochemical decomposition of Li2CO3 in NiO-Li2CO3 nanocomposite thin film and powder electrodes. J. Power Sources 2012, 218, 113–118.

    Article  Google Scholar 

  26. Shu, J.; Shui, M.; Huang, F. T.; Ren, Y. L.; Wang, Q. C.; Xu, D.; Hou, L. A new look at lithium cobalt oxide in a broad voltage range for lithium-ion batteries. J. Phys. Chem. C 2010, 114, 3323–3328.

    Google Scholar 

  27. Xu, H. Y.; Xie, S.; Wang, Q. Y.; Yao, X. L.; Wang, Q. S.; Chen, C. H. Electrolyte additive trimethyl phosphite for improving electrochemical performance and thermal stability of LiCoO2 cathode. Electrochim. Acta 2006, 52, 636–642.

    Article  Google Scholar 

  28. Aurbach, D.; Markovsky, B.; Rodkin, A.; Cojocaru, M.; Levi, E.; Kim, H.-J. An analysis of rechargeable lithium-ion batteries after prolonged cycling. Electrochim. Acta 2002, 47, 1899–1911.

    Article  Google Scholar 

  29. Patel, V. K.; Saurav, J. R.; Gangopadhyay, K.; Gangopadhyay, S.; Bhattacharya, S. Combustion characterization and modeling of novel nanoenergetic composites of Co3O4/nAl. RSC Adv. 2015, 5, 21471–21479.

    Article  Google Scholar 

  30. Xia, X.-H.; Tu, J.-P.; Zhang, Y.-Q.; Mai, Y.-J.; Wang, X.-L.; Gu, C.-D.; Zhao, X.-B. Freestanding Co3O4 nanowire array for high performance supercapacitors. RSC Adv. 2012, 2, 1835–1841.

    Article  Google Scholar 

  31. Wang, Z. X.; Huang, X. J.; Chen, L. Q. Characterization of spontaneous reactions of LiCoO2 with electrolyte solvent for lithium-ion batteries. J. Electrochem. Soc. 2004, 151, A1641–A1652.

    Article  Google Scholar 

  32. Wang, Z. X.; Chen, L. Q. Solvent storage-induced structural degradation of LiCoO2 for lithium ion batteries. J. Power Sources 2005, 146, 254–258.

    Article  Google Scholar 

  33. Guo, B. K.; Liu, N.; Liu, J. Y.; Shi, H. J.; Wang, Z. X.; Chen, L. Q. Compatibility of Co3O4 with commercial electrolyte. Electrochem. Solid-State Lett. 2007, 10, A118–A121.

    Article  Google Scholar 

  34. Markevich, E.; Salitra, G.; Aurbach, D. Influence of the PVdF binder on the stability of LiCoO2 electrodes. Electrochem. Commun. 2005, 7, 1298–1304.

    Article  Google Scholar 

  35. Aurbach, D.; Markovsky, B.; Salitra, G.; Markevich, E.; Talyossef, Y.; Koltypin, M.; Nazar, L.; Ellis, B.; Kovacheva, D. Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries. J. Power Sources 2007, 165, 491–499.

    Article  Google Scholar 

  36. Park, Y.; Shin, S. H.; Lee, S. M.; Kim, S. P.; Choi, H. C.; Jung, Y. M. 2D Raman correlation analysis of formation mechanism of passivating film on overcharged LiCoO2 electrode with additive system. J. Mol. Struct. 2014, 1069, 183–187.

    Google Scholar 

  37. Liu, N.; Li, H.; Wang, Z. X.; Huang, X. J.; Chen, L. Q. Origin of solid electrolyte interphase on nanosized LiCoO2. Electrochem. Solid-State Lett. 2006, 9, A328–A331.

    Article  Google Scholar 

  38. Burba, C. M.; Shaju, K. M.; Bruce, P. G.; Frech, R. Infrared and Raman spectroscopy of nanostructured LT-LiCoO2 cathodes for Li-ion rechargeable batteries. Vib. Spectrosc. 2009, 51, 248–250.

    Article  Google Scholar 

  39. Pasierb, P.; Komornicki, S.; Rokita, M.; Rekas, M. Structural properties of Li2CO3-BaCO3 system derived from IR and Raman spectroscopy. J. Mol. Struct. 2001, 596, 151–156.

    Article  Google Scholar 

  40. Matsushita, T.; Dokko, K.; Kanamura, K. In situ FT-IR measurement for electrochemical oxidation of electrolyte with ethylene carbonate and diethyl carbonate on cathode active material used in rechargeable lithium batteries. J. Power Sources 2005, 146, 360–364.

    Article  Google Scholar 

  41. Fukumitsu, H.; Omori, M.; Terada, K.; Suehiro, S. Development of in situ cross-sectional Raman imaging of LiCoO2 cathode for Li-ion battery. Electrochemistry 2015, 83, 993–996.

    Article  Google Scholar 

  42. Itoh, T.; Sato, H.; Nishina, T.; Matue, T.; Uchida, I. In situ Raman spectroscopic study of LixCoO2 electrodes in propylene carbonate solvent systems. J. Power Sources 1997, 68, 333–337.

    Article  Google Scholar 

  43. Shibuya, M.; Nishina, T.; Matsue, T.; Uchida, I. In situ conductivity measurements of LiCoO2 film during lithium insertion/extraction by using interdigitated microarray electrodes. J. Electrochem. Soc. 1996, 143, 3157–3160.

    Article  Google Scholar 

  44. Sifuentes, A.; Stowe, A. C.; Smyrl, N. Determination of the role of Li2O on the corrosion of lithium hydride. J. Alloys Compd. 2013, 580, S271–S273.

    Article  Google Scholar 

  45. Bi, Y. J.; Wang, T.; Liu, M.; Du, R.; Yang, W. C.; Liu, Z. X.; Peng, Z.; Liu, Y.; Wang, D. Y.; Sun, X. L. Stability of Li2CO3 in cathode of lithium ion battery and its influence on electrochemical performance. RSC Adv. 2016, 6, 19233–19237.

    Article  Google Scholar 

  46. Duan, W. J.; Lu, S. H.; Wu, Z. L.; Wang, Y. S. Size effects on properties of NiO nanoparticles grown in alkalisalts. J. Phys. Chem. C 2012, 116, 26043–26051.

    Article  Google Scholar 

  47. Yabuuchi, N.; Yoshii, K.; Myung, S. T.; Nakai, I.; Komaba, S. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2. J. Am. Chem. Soc. 2011, 133, 4404–4419.

    Article  Google Scholar 

  48. Bai, Y.; Liu, N.; Liu, J. Y.; Wang, Z. X.; Chen, L. Q. Coating material-induced acidic electrolyte improves LiCoO2 per formances. Electrochem. Solid-State Lett. 2006, 9, A552–A556.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxiang Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Tang, D., Wang, D. et al. LiCoO2-catalyzed electrochemical oxidation of Li2CO3 . Nano Res. 9, 3903–3913 (2016). https://doi.org/10.1007/s12274-016-1259-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1259-7

Keywords

Navigation