Skip to main content
Log in

All-inorganic nitrate electrolyte for high-performance lithium oxygen battery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium-oxygen (Li-O2) batteries have been regarded as an expectant successor for next-generation energy storage systems owing to their ultra-high theoretical energy density. However, the comprehensive properties of the commonly utilized organic salt electrolyte are still unsatisfactory, not to mention their expensive prices, which seriously hinders the practical production and application of Li-O2 batteries. Herein, we have proposed a low-cost all-inorganic nitrate electrolyte (LiNO3−KNO3−DMSO) for Li-O2 batteries. The inorganic nitrate electrolyte exhibits higher ionic conductivity and a wider electrochemical stability window than the organic salt electrolyte. The existence of K+ can stabilize the O2 intermediate, promoting the discharge process through the solution pathway with an enlarged capacity. Even at an ultra-low concentration of 0.01 M, the K+ can still remain stable to promote the solution discharge process and also possess a new function of inhibiting the dendrite growth by electrostatic shielding, further enhancing the battery stability and contributing to the long cycle lifetime. As a result, in the 0.99 M LiNO3−0.01 M KNO3−DMSO electrolyte, the Li-O2 batteries exhibit prolonged cycling performance (108 cycles) and excellent rate performance (2 A·g−1), significantly superior to the organic salt one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiao, S. H.; Ren, X. D.; Cao, R. G.; Engelhard, M. H.; Liu, Y. Z.; Hu, D. H.; Mei, D. H.; Zheng, J. M.; Zhao, W. G.; Li, Q. Y. et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 2018, 3, 739–746.

    Article  CAS  Google Scholar 

  2. Hou, B. W.; He, L.; Feng, X. N.; Zhang, W. F.; Wang, L.; He, X. M. Effect of amine additives on thermal runaway inhibition of SiC∣∣NCM811 batteries. J. Electrochem. 2023, 29, 2211141.

    Google Scholar 

  3. Kwak, W. J.; Rosy; Sharon, D.; Xia, C.; Kim, H.; Johnson, L. R.; Bruce, P. G.; Nazar, L. F.; Sun, Y. K.; Frimer, A. A. et al. Lithium-oxygen batteries and related systems: Potential, status, and future. Chem. Rev. 2020, 120, 6626–6683.

    Article  CAS  PubMed  Google Scholar 

  4. Cao, R. F.; Cui, Y. F.; Huang, G.; Liu, W. Q.; Liu, J. W.; Zhang, X. B. Designing a photo-assisted Co-C3N4 cathode for high performance Li-O2 batteries. Nano Res. 2023, 16, 8405–8410.

    Article  CAS  Google Scholar 

  5. Lu, J.; Li, L.; Park, J. B.; Sun, Y. K.; Wu, F.; Amine, K. Aprotic and aqueous Li-O2 batteries. Chem. Rev. 2014, 114, 5611–5640.

    Article  CAS  PubMed  Google Scholar 

  6. Chen, K.; Huang, G.; Zhang, X. B. Efforts towards practical and sustainable Li/Na-air batteries. Chin. J. Chem. 2021, 39, 32–42.

    Article  Google Scholar 

  7. Zheng, X. Y.; Huang, L. Q.; Ye, X. L.; Zhang, J. X.; Min, F. Y.; Luo, W.; Huang, Y. H. Critical effects of electrolyte recipes for Li and Na metal batteries. Chem 2021, 7, 2312–2346.

    Article  CAS  Google Scholar 

  8. Mauler, L.; Duffner, F.; Zeier, W. G.; Leker, J. Battery cost forecasting: A review of methods and results with an outlook to 2050. Energy Environ. Sci. 2021, 14, 4712–4739.

    Article  Google Scholar 

  9. Guo, R. Q.; Wu, F.; Wang, X. R.; Bai, Y.; Wu, C. Multi-electron reaction-boosted high energy density batteries: Material and system innovation. J. Electrochem. 2022, 28, 2219011.

    Google Scholar 

  10. Ding, Z. Y.; Tang, Q. M.; Zhang, Q.; Yao, P. H.; Liu, X. J.; Wu, J. W. A flexible solid polymer electrolyte enabled with lithiated zeolite for high performance lithium battery. Nano Res. 2023, 16, 9443–9452.

    Article  CAS  Google Scholar 

  11. Xu, J. J.; Zhang, J. X.; Pollard, T. P.; Li, Q. D.; Tan, S.; Hou, S.; Wan, H. L.; Chen, F.; He, H. X.; Hu, E. Y. et al. Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 2023, 614, 694–700.

    Article  CAS  PubMed  Google Scholar 

  12. Cai, Y. C.; Hou, Y. P.; Lu, Y.; Zhang, Q.; Yan, Z. H.; Chen, J. Ionic liquid electrolyte with weak solvating molecule regulation for stable Li deposition in high-performance Li-O2 batteries. Angew. Chem., Int. Ed. 2023, 62, e202218014.

    Article  CAS  Google Scholar 

  13. Liu, B.; Xu, W.; Yan, P. F.; Kim, S. T.; Engelhard, M. H.; Sun, X. L.; Mei, D. H.; Cho, J.; Wang, C. M.; Zhang, J. G. Stabilization of Li metal anode in DMSO-based electrolytes via optimization of salt-solvent coordination for Li-O2 batteries. Adv. Energy Mater. 2017, 7, 1602605.

    Article  Google Scholar 

  14. Zhang, X. P.; Li, Y. N.; Sun, Y. Y.; Zhang, T. Inverting the triiodide formation reaction by the synergy between strong electrolyte solvation and cathode adsorption for lithium-oxygen batteries. Angew. Chem., Int. Ed. 2019, 58, 18394–18398.

    Article  CAS  Google Scholar 

  15. Ko, Y.; Park, H.; Lee, K.; Kim, S. J.; Park, H.; Bae, Y.; Kim, J.; Park, S. Y.; Kwon, J. E.; Kang, K. Anchored mediator enabling shuttle-free redox mediation in lithium-oxygen batteries. Angew. Chem., Int. Ed. 2020, 59, 5376–5380.

    Article  CAS  Google Scholar 

  16. Jung, H. G.; Hassoun, J.; Park, J. B.; Sun, Y. K.; Scrosati, B. An improved high-performance lithium-air battery. Nat. Chem. 2012, 4, 579–585.

    Article  CAS  PubMed  Google Scholar 

  17. Ren, X. D.; Zou, L. F.; Cao, X.; Engelhard, M. H.; Liu, W.; Burton, S. D.; Lee, H.; Niu, C. J.; Matthews, B. E.; Zhu, Z. H. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Jotle 2019, 3, 1662–1676.

    CAS  Google Scholar 

  18. Yu, Z. A.; Wang, H. S.; Kong, X.; Huang, W.; Tsao, Y.; Mackanic, D. G.; Wang, K. C.; Wang, X. C.; Huang, W. X.; Choudhury, S. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 2020, 5, 526–533.

    Article  CAS  Google Scholar 

  19. McCloskey, B. D.; Valery, A.; Luntz, A. C.; Gowda, S. R.; Wallraff, G. M.; Garcia, J. M.; Mori, T.; Krupp, L. E. Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li-O2 batteries. J. Phys. Chem. Lett. 2013, 4, 2989–2993.

    Article  CAS  PubMed  Google Scholar 

  20. Veith, G. M.; Nanda, J.; Delmau, L. H.; Dudney, N. J. Influence of lithium salts on the discharge chemistry of Li-air cells. J. Phys. Chem. Lett. 2012, 3, 1242–1247.

    Article  CAS  PubMed  Google Scholar 

  21. Freunberger, S. A.; Chen, Y. H.; Peng, Z. Q.; Griffin, J. M.; Hardwick, L. J.; Bardé, F.; Novák, P.; Bruce, P. G. Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc. 2011, 133, 8040–8047.

    Article  CAS  PubMed  Google Scholar 

  22. Ogasawara, T.; Débart, A.; Holzapfel, M.; Novák, P.; Bruce, P. G. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 2006, 128, 1390–1393.

    Article  CAS  PubMed  Google Scholar 

  23. Nasybulin, E.; Xu, W.; Engelhard, M. H.; Nie, Z. M.; Burton, S. D.; Cosimbescu, L.; Gross, M. E.; Zhang, J. G. Effects of electrolyte salts on the performance of Li-O2 batteries. J. Phys. Chem. C 2013, 117, 2635–2645.

    Article  CAS  Google Scholar 

  24. Younesi, R.; Urbonaite, S.; Edström, K.; Hahlin, M. The cathode surface composition of a cycled Li-O2 battery: A photoelectron spectroscopy study. J. Phys. Chem. C 2012, 116, 20673–20680.

    Article  CAS  Google Scholar 

  25. Chang, Z.; Qiao, Y.; Deng, H.; Yang, H. J.; He, P.; Zhou, H. S. A stable high-voltage lithium-ion battery realized by an in-built water scavenger. Energy Environ. Sci. 2020, 13, 1197–1204.

    Article  CAS  Google Scholar 

  26. Shao, Y. Y.; Ding, F.; Xiao, J.; Zhang, J.; Xu, W.; Park, S.; Zhang, J. G.; Wang, Y.; Liu, J. Making Li-air batteries rechargeable: Material challenges. Adv. Fund Mater. 2013, 23, 987–1004.

    Article  CAS  Google Scholar 

  27. Zhang, X. Q.; Chen, X.; Hou, L. P.; Li, B. Q.; Cheng, X. B.; Huang, J. Q.; Zhang, Q. Regulating anions in the solvation sheath of lithium ions for stable lithium metal batteries. ACS Energy Lett. 2019, 4, 411–416.

    Article  CAS  Google Scholar 

  28. Xin, X.; Ito, K.; Dutta, A.; Kubo, Y. Dendrite- free epitaxial growth of lithium metal during charging in Li-O2 batteries. Angew. Chem., Int. Ed. 2018, 57, 13206–13210.

    Article  CAS  Google Scholar 

  29. Sharon, D.; Hirsberg, D.; Salama, M.; Afri, M.; Frimer, A. A.; Noked, M.; Kwak, W.; Sun, Y. K.; Aurbach, D. Mechanistic role of Li+ dissociation level in aprotic Li-O2 battery. ACS Appl. Mater. Interfaces 2016, 8, 5300–5307.

    Article  CAS  PubMed  Google Scholar 

  30. Burke, C. M.; Pande, V.; Khetan, A.; Viswanathan, V.; McCloskey, B. D. Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li-O2 battery capacity. Proc. Natl. Acad. Sci. USA 2015, 112, 9293–9298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yoo, E.; Zhou, H. S. Enhanced cycle stability of rechargeable Li-O2 batteries by the synergy effect of a LiF protective layer on the Li and DMTFA additive. ACS Appl. Mater. Interfaces 2017, 9, 21307–21313.

    Article  CAS  PubMed  Google Scholar 

  32. Xu, J. J.; Liu, Q. C.; Yu, Y.; Wang, J.; Yan, J. M.; Zhang, X. B. In situ construction of stable tissue-directed/reinforced bifunctional separator/protection film on lithium anode for lithium-oxygen batteries. Adv. Mater. 2017, 29, 1606552.

    Article  Google Scholar 

  33. Chen, K.; Huang, G.; Ma, J. L.; Wang, J.; Yang, D. Y.; Yang, X. Y.; Yu, Y.; Zhang, X. B. The stabilization effect of CO2 in lithium-oxygen/CO2 batteries. Angew. Chem., Int. Ed. 2020, 59, 16661–16667.

    Article  CAS  Google Scholar 

  34. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. et al. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford CT, 2016.

    Google Scholar 

  35. Becke, A. D. Density- functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100.

    Article  CAS  Google Scholar 

  36. Lee, C.; Yang, W. T.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.

    Article  CAS  Google Scholar 

  37. Becke, A. D. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377.

    Article  CAS  Google Scholar 

  38. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396.

    Article  CAS  PubMed  Google Scholar 

  39. Meng, J. W.; Lei, M.; Lai, C. Z.; Wu, Q. P.; Liu, Y. Y.; Li, C. L. Lithium ion repulsion-enrichment synergism induced by core-shell ionic complexes to enable high-loading lithium metal batteries. Angew. Chem., Int. Ed. 2021, 60, 23256–23266.

    Article  CAS  Google Scholar 

  40. Qin, L.; Schkeryantz, L.; Zheng, J. F.; Xiao, N.; Wu, Y. Y. Superoxide-based K-O2 batteries: Highly reversible oxygen redox solves challenges in air electrodes. J. Am. Chem. Soc. 2020, 142, 11629–11640.

    Article  CAS  PubMed  Google Scholar 

  41. Younesi, R.; Hahlin, M.; Björefors, F.; Johansson, P.; Edström, K. Li- O2 battery degradation by lithium peroxide (Li2O2): A model study. Chem. Mater. 2013, 25, 77–84.

    Article  CAS  Google Scholar 

  42. Lu, Y. C.; Crumlin, E. J.; Veith, G. M.; Harding, J. R.; Mutoro, E.; Baggetto, L.; Dudney, N. J.; Liu, Z.; Shao-Horn, Y. In situ ambientpressure X-ray photoelectron spectroscopy studies of lithium-oxygenredox reactions. Sci. Rep. 2012, 2, 715.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tułodziecki, M.; Leverick, G. M.; Amanchukwu, C. V.; Katayama, Y.; Kwabi, D. G.; Bardé, F.; Hammond, P. T.; Shao-Horn, Y. The role of iodide in the formation of lithium hydroxide in lithium-oxygen batteries. Energy Environ. Sci. 2017, 10, 1828–1842.

    Article  Google Scholar 

  44. Matsuda, S.; Kubo, Y.; Uosaki, K.; Nakanishi, S. Potassium ions promote solution-route Li2O2 formation in the positive electrode reaction of Li-O2 batteries. J. Phys. Chem. Lett. 2017, 8, 1142–1146.

    Article  CAS  PubMed  Google Scholar 

  45. Zhao, S.; Wang, C. C.; Du, D. F.; Li, L.; Chou, S. L.; Li, F. J.; Chen, J. Bifunctional effects of cation additive on Na-O2 batteries. Angew. Chem., Int. Ed. 2021, 60, 3205–3211.

    Article  CAS  Google Scholar 

  46. Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X. L.; Shao, Y. Y.; Engelhard, M. H.; Nie, Z. M.; Xiao, J. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 2013, 135, 4450–4456.

    Article  CAS  PubMed  Google Scholar 

  47. Yang, Q. F.; Hu, J. L.; Meng, J. W.; Li, C. L. C-F-rich oil drop as a non-expendable fluid interface modifier with low surface energy to stabilize a Li metal anode. Energy Environ. Sci. 2021, 14, 3621–3631.

    Article  CAS  Google Scholar 

  48. Cong, G. T.; Wang, W. W.; Lai, N. C.; Liang, Z. J.; Lu, Y. C. A high-rate and long-life organic-oxygen battery. Nat. Mater. 2019, 18, 390–396.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, X. P.; Sun, Y. Y.; Sun, Z.; Yang, C. S.; Zhang, T. Anode interfacial layer formation via reductive ethyl detaching of organic iodide in lithium-oxygen batteries. Nat. Commun. 2019, 10, 3543.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wu, X. H.; Niu, B.; Zhang, H. T.; Li, Z. G.; Luo, H. Y.; Tang, Y. L.; Yu, X. Y.; Huang, L.; He, X. R.; Wang, X. et al. Enhancing the reaction kinetics and reversibility of Li-O2 batteries by multifunctional polymer additive. Adv. Energy Mater. 2023, 13, 2203089.

    Article  CAS  Google Scholar 

  51. Cai, Y. C.; Zhang, Q.; Lu, Y.; Hao, Z. M.; Ni, Y. X.; Chen, J. An ionic liquid electrolyte with enhanced Li+ transport ability enables stable Li deposition for high-performance Li-O2 batteries. Angew. Chem., Int. Ed. 2021, 60, 25973–25980.

    Article  CAS  Google Scholar 

  52. Tong, B.; Huang, J.; Zhou, Z. B.; Peng, Z. Q. The salt matters: Enhanced reversibility of Li-O2 batteries with a Li[(CF3SO2)(n-C4F9SO2)N]-based electrolyte. Adv. Mater. 2018, 30, 1704841.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2020YFE0204500), the National Natural Science Foundation of China (Nos. 52171194 and 52271140), the CAS Project for Young Scientists in Basic Research (No. YSBR-058), the Youth Innovation Promotion Association CAS (No. 2020230), and the National Natural Science Foundation of China Outstanding Youth Science Foundation of China (Overseas).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Du, J., Chen, K. et al. All-inorganic nitrate electrolyte for high-performance lithium oxygen battery. Nano Res. 17, 4163–4170 (2024). https://doi.org/10.1007/s12274-023-6353-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6353-z

Keywords

Navigation