Skip to main content
Log in

A LiA1Cl4·3SO2-NaAlCl4·2SO2 binary inorganic electrolyte with improved electrochemical performance for Li-metal batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A LiAlCl4·3SO2-NaAlCl4·2SO2 binary inorganic electrolyte was prepared by using NaAlCl4·2SO2 as the functional additive and mixing with LiAlCl4·3SO2. The obtained LiAlCl4·3SO2-NaAlCl4·2SO2 not only has good non-flammability but also exhibits improved electrochemical performance for Li-metal batteries. With the addition of NaAlCl4·2SO2, the fabricated Li/Cu cells using mixed inorganic electrolyte display higher average coulombic efficiency and more excellent cycling stability. Through scanning electron microscopy (SEM) characterization, it is demonstrated that the surficial morphology of Li-deposited layer is smoother in LiAlCl4·3SO2-NaAlCl4·2SO2 binary electrolyte system than pure LiAlCl4·3SO2. Furthermore, the fabricated Li/graphite cells using LiAlCl4·3SO2-NaAlCl4·2SO2 binary electrolyte also show higher specific capacity and better cycling stability than using pure LiAlCl4·3SO2 electrolyte as well as the conventional organic electrolyte (1 M LiPF6 in ethylene carbonate/dimethyl carbonate mixed solvent with 1:1 in volume). Consequently, LiAlCl4·3SO2-NaAlCl4·2SO2 is proposed to have great potential for the safe and high-performance Li-metal batteries.

A LiAlCl4·3SO2-NaAlCl4·2SO2 binary inorganic electrolyte is prepared by using NaAlCl4·2SO2 as the functional additive and mixing with LiAlCl4·3SO2, which exhibits improved electrochemical performance for Li-metal batteries

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang B, Liu T, Liu A, Liu G, Wang L, Gao T, Wang D, Zhao XS (2016) A hierarchical porous C@LiFePO4/carbon nanotubes microsphere composite for high-rate lithium-ion batteries: combined experimental and theoretical study. Adv Energy Mater 6:1600426

    Article  Google Scholar 

  2. Wang B, Al Abdulla W, Wang D, Zhao XS (2015) A three-dimensional porous LiFePO4 cathode material modified with a nitrogen-doped graphene aerogel for high-power lithium ion batteries. Energy Environ Sci 8:869–875

    Article  CAS  Google Scholar 

  3. Briguglio N, Siracusano S, Bonura G, Sebastián D, Aricò AS (2019) Flammability reduction in a pressurised water electrolyser based on a thin polymer electrolyte membrane through a Pt-alloy catalytic approach. Appl Catal B Environ 246:254–265

    Article  CAS  Google Scholar 

  4. Yi T, Zhu Y, Tao W, Luo S, Xie Y, Li X (2018) Recent advances in the research of MLi2Ti6O14 (M = 2Na, Sr, Ba, Pb) anode materials for Li-ion batteries. J Power Sources 399:26–41

    Article  CAS  Google Scholar 

  5. Han X, Gui X, Yi T, Li Y, Yue C (2018) Recent progress of NiCo2O4-based anodes for high-performance lithium-ion batteries. Curr Opinion Solid State Mater Sci 22:109–126

    Article  CAS  Google Scholar 

  6. Gao T, Wang B, Wang L, Liu G, Wang F, Luo H, Wang D (2018) LiAlCl4·3SO2 as a high conductive, non-flammable and inorganic non-aqueous liquid electrolyte for lithium ion batteries. Electrochim Acta 286:77–85

    Article  CAS  Google Scholar 

  7. Li X, Wang X, Shao D, Liu L, Yang L (2019) Preparation and performance of poly (ethylene oxide)-based composite solid electrolyte for all solid-state lithium batteries. J Appl Polym Sci 136:47498

    Article  Google Scholar 

  8. Ding F, Xu W, Graff GL, Zhang J, Sushko ML, Chen X, Shao Y, Engelhard MH, Nie Z, Xiao J, Liu X, Sushko PV, Liu J, Zhang J (2013) Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc 135:4450–4456

    Article  CAS  Google Scholar 

  9. Zhao J, Zhou G, Yan K, Xie J, Li Y, Liao L, Jin Y, Liu K, Hsu P, Wang J, Cheng H, Cui Y (2017) Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nat Nanotechnol 12:993–999

    Article  CAS  Google Scholar 

  10. Cheng X, Zhang R, Zhao C, Zhang Q (2017) Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 117:10403–10473

    Article  CAS  Google Scholar 

  11. Chen R, Zhao Y, Li Y, Ye Y, Li Y, Wu F, Chen S (2017) Vinyltriethoxysilane as an electrolyte additive to improve the safety of lithium-ion batteries. J Mater Chem A 5:5142–5147

    Article  CAS  Google Scholar 

  12. Haregewoin AM, Wotango AS, Hwang B (2016) Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy Environ Sci 9:1955–1988.4

    Article  CAS  Google Scholar 

  13. Wang B, Xie Y, Liu T, Luo H, Wang B, Wang C, Wang L, Wang D, Dou S, Zhou Y (2017) LiFePO4 quantum-dots composite synthesized by a general microreactor strategy for ultra-high-rate lithium ion batteries. Nano Energy 42:363–372

    Article  CAS  Google Scholar 

  14. Wang B, Xu B, Liu T, Liu P, Guo C, Wang S, Wang Q, Xiong Z, Wang D, Zhao XS (2014) Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries. Nanoscale 6:986–995

    Article  CAS  Google Scholar 

  15. Suo L, Hu Y, Li H, Armand M, Chen L (2013) A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 4:1481

    Article  Google Scholar 

  16. Xing H, Liao C, Yang Q, Veith GM, Guo B, Sun X, Ren Q, Hu Y, Dai S (2014) Ambient lithium-SO2 batteries with ionic liquids as electrolytes. Angew Chem Int Ed 53:2099–2103

    Article  CAS  Google Scholar 

  17. Hu J, Wang W, Yu R, Guo M, He C, Xie X, Peng H, Xue Z (2017) Solid polymer electrolyte based on ionic bond or covalent bond functionalized silica nanoparticles. RSC Adv 7:54986–54994

    Article  CAS  Google Scholar 

  18. Nandasiri MI, Camacho-Forero LE, Schwarz AM, Shutthanandan V (2017) In situ chemical imaging of solid-electrolyte interphase layer evolution in Li–S batteries. Chem Mater 29:4728–4737

    Article  CAS  Google Scholar 

  19. Suo L, Borodin O, Wang Y, Rong X, Sun W, Fan X, Xu S, Schroeder MA, Cresce AV, Wang F, Yang C, Hu Y, Xu K, Wang C (2017) “Water-in-salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv Energy Mater 7:1701189

    Article  Google Scholar 

  20. Fan L, Li S, Liu L, Zhang W, Gao L, Fu Y, Chen F, Li J, Zhuang HL, Lu Y (2018) Enabling stable lithium metal anode via 3D inorganic skeleton with superlithiophilic interphase. Adv Energy Mater 8:1802350

    Article  Google Scholar 

  21. Ota H, Shima K, Ue M, Yamaki J (2004) Effect of vinylene carbonate as additive to electrolyte for lithium metal anode. Electrochim Acta 49:565–572

    Article  CAS  Google Scholar 

  22. Fan X, Chen L, Ji X, Deng T, Hou S, Chen J, Zheng J, Wang F, Jiang J, Xu K, Wang C (2018) Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4:174–185

    Article  CAS  Google Scholar 

  23. Wang F, Borodin O, Ding MS, Gobet M, Vatamanu J, Fan X, Gao T, Eidson N, Liang Y, Sun W, Greenbaum S, Xu K, Wang C (2018) Hybrid aqueous/non-aqueous electrolyte for safe and high-energy Li-ion batteries. Joule 2:927–937

    Article  CAS  Google Scholar 

  24. Ma Y, Zhou Z, Li C, Wang L, Wang Y, Cheng X, Zuo P, Du C, Huo H, Gao Y, Yin G (2018) Enabling reliable lithium metal batteries by a bifunctional anionic electrolyte additive. Energy Storage Mater 11:197–204

    Article  Google Scholar 

  25. Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12:194–206

    Article  CAS  Google Scholar 

  26. Li S, Jiang M, Xie Y, Xu H, Jia J, Li J (2018) Developing high-performance lithium metal anode in liquid electrolytes: challenges and progress. Adv Mater 30:1706375

    Article  Google Scholar 

  27. Kim A, Jung H, Song J, Kim HJ, Jeong G, Kim H (2019) Lithium-ion intercalation into graphite in SO2-based inorganic electrolyte toward high-rate-capable and safe lithium-ion batteries. ACS Appl Mater Interfaces 11:9054–9061

    Article  CAS  Google Scholar 

  28. Robert J, Mammone MB (1987) Electrochemical studies of Li (SO2)3AlCl4 electrolytes containing added halogens. J Electrochem Soc 134:37–40

    Article  Google Scholar 

  29. Song J, Chun J, Kim A, Jung H, Kim H (2018) Dendrite-free Li metal anode for rechargeable Li–SO2 batteries employing surface modification with a NaAlCl4–2SO2 electrolyte. ACS Appl Mater Interfaces 10:34699–34705

    Article  CAS  Google Scholar 

  30. Komaba S, Itabashi T, Kaplan B, Groult H, Kumagai N (2003) Enhancement of Li-ion battery performance of graphite anode by sodium ion as an electrolyte additive. Electrochem Commun 5:962–966

    Article  CAS  Google Scholar 

  31. Park CW, Seung MO (1997) Performances of Li/LiCoO2 cells in LiA1C14·3SO2 electrolyte. J Power Sources 68:338–343

    Article  CAS  Google Scholar 

  32. Nicholas G, Charles A, John BG (2018) Communication-characterization of LiA1C14 center dot xSO2 inorganic liquid Li+ electrolyte. J Electrochem Soc 165:A1694–A1696

    Article  Google Scholar 

  33. Yim T, Jeong G, Han Y, Kim Y (2016) Size effect of SO2 receptors on the energy efficiency of Na-SO2 batteries: gallium-based inorganic electrolytes. RSC Adv 6:1515–1519

    Article  Google Scholar 

  34. Hartl R, Fleischmann M, Gschwind R, Winter M, Gores H (2013) A liquid inorganic electrolyte showing an unusually high lithium ion transference number: a concentrated solution of LiAlCl4 in sulfur dioxide. Energies 6:4448–4464

    Article  Google Scholar 

  35. Chai J, Liu Z, Zhang J, Sun J, Tian Z, Ji Y, Tang K, Zhou X, Cui G (2017) A superior polymer electrolyte with rigid cyclic carbonate backbone for rechargeable lithium ion batteries. ACS Appl Mater Interfaces 9:17897–17905

    Article  CAS  Google Scholar 

  36. Zhang X, Cheng X, Chen X, Yan C, Zhang Q, Zhang X, Cheng X, Chen X, Yan C, Zhang Q (2017) Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv Funct Mater 27:1605989

    Article  Google Scholar 

  37. Ha J, Park S, Yu S, Jin A, Jang B, Bong S, Kim I, Sung Y, Piao Y (2013) A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries. Nanoscale 5:8647–8655

    Article  CAS  Google Scholar 

  38. Auvergniot J, Cassel A, Foix D, Viallet V, Seznec V, Dedryvère R (2017) Redox activity of argyrodite Li6PS5Cl electrolyte in all-solid-state Li-ion battery: an XPS study. Solid State Ionics 300:78–85

    Article  CAS  Google Scholar 

  39. Yan C, Cheng X-B, Zhao C-Z, Huang J-Q, Yang S-T, Zhang Q (2016) Lithium metal protection through in-situ formed solid electrolyte interphase in lithium-sulfur batteries: the role of polysulfides on lithium anode. J Power Sources 327:212–220

    Article  CAS  Google Scholar 

  40. Stark JK, Ding Y, Kohl PA (2011) Dendrite-free electrodeposition and reoxidation of lithium-sodium alloy for metal-anode battery. J Electrochem Soc 158:A1100

    Article  CAS  Google Scholar 

  41. Goojin J, Hansu K, Hyo S, Young K, Jong H, Jae H, Juhye S, Keonjoon L, Taeeun Y, Ki J, Hyukjae L, Young-Jun K, Hun-Joon S (2015) A room-temperature sodium rechargeable battery using an SO2-based nonflammable inorganic liquid catholyte. Sci Rep 5:12827

    Article  Google Scholar 

  42. Song R, Wang B, Xie Y, Ruan T, Wang F, Yuan Y, Wang D, Dou S (2018) A 3D conductive scaffold with lithiophilic modification for stable lithium metal batteries. J Mater Chem A 6:17967–17976

    Article  CAS  Google Scholar 

Download references

Acknowledgements

National Natural Science Foundation of China (Nos. 51874110 and 51604089), the China Postdoctoral Science Foundation (Grant Nos. 2016M601431 and 2018T110308), and the Heilongjiang Province Postdoctoral Science Foundation (Grant Nos. LBH-Z16056 and LBH-TZ1707) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Wang or Dianlong Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Wang, B., Gao, T. et al. A LiA1Cl4·3SO2-NaAlCl4·2SO2 binary inorganic electrolyte with improved electrochemical performance for Li-metal batteries. Ionics 25, 4751–4760 (2019). https://doi.org/10.1007/s11581-019-03032-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03032-2

Keywords

Navigation