Skip to main content
Log in

Ambient synthesis, characterization, and electrochemical activity of LiFePO4 nanomaterials derived from iron phosphate intermediates

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

LiFePO4 materials have become increasingly popular as a cathode material due to the many benefits they possess including thermal stability, durability, low cost, and long life span. Nevertheless, to broaden the general appeal of this material for practical electrochemical applications, it would be useful to develop a relatively mild, reasonably simple synthesis method of this cathode material. Herein, we describe a generalizable, 2-step methodology of sustainably synthesizing LiFePO4 by incorporating a template-based, ambient, surfactantless, seedless, U-tube protocol in order to generate size and morphologically tailored, crystalline, phase-pure nanowires. The purity, composition, crystallinity, and intrinsic quality of these wires were systematically assessed using transmission electron microscopy (TEM), high-resolution TEM (HRTEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), selected area electron diffraction (SAED), energy dispersive analysis of X-rays (EDAX), and high-resolution synchrotron XRD. From these techniques, we were able to determine that there is an absence of any obvious defects present in our wires, supporting the viability of our synthetic approach. Electrochemical analysis was also employed to assess their electrochemical activity. Although our nanowires do not contain any noticeable impurities, we attribute their less than optimal electrochemical rigor to differences in the chemical bonding between our LiFePO4 nanowires and their bulk-like counterparts. Specifically, we demonstrate for the first time experimentally that the Fe-O3 chemical bond plays an important role in determining the overall conductivity of the material, an assertion which is further supported by recent “first-principles” calculations. Nonetheless, our ambient, solution-based synthesis technique is capable of generating highly crystalline and phase-pure energy-storage-relevant nanowires that can be tailored so as to fabricate different sized materials of reproducible, reliable morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; Goodenough, J. B. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J. Electrochem. Soc. 1997, 144, 1609–1613.

    Article  Google Scholar 

  2. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Phospho-olivines as positive electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188–1194.

    Article  Google Scholar 

  3. Sides, C. R.; Croce, F.; Young, V. Y.; Martin, C. R.; Scrosati, B. A high-rate, nanocomposite LiFePO4/carbon cathode. Electrochem. Solid-State Lett. 2005, 8, A484–A487.

    Article  Google Scholar 

  4. Huang, X. J.; Yan, S. J.; Zhao, H. Y.; Zhang, L.; Guo, R.; Chang, C. K.; Kong, X. Y.; Han, H. B. Electrochemical performance of LiFePO4 nanorods obtained from hydrothermal process. Mater. Charact. 2010, 61, 720–725.

    Article  Google Scholar 

  5. Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 2002, 1, 123–128.

    Article  Google Scholar 

  6. Xu, B.; Qian, D.; Wang, Z.; Meng, Y. S. Recent progress in cathode materials research for advanced lithium ion batteries. Mater. Sci. Eng.: R: Rep. 2012, 73, 51–65.

    Article  Google Scholar 

  7. Ellis, B.; Kan, W. H.; Makahnouk, W. R. M.; Nazar, L. F. Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4. J. Mater. Chem. 2007, 17, 3248–3254.

    Article  Google Scholar 

  8. Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4302.

    Article  Google Scholar 

  9. Yi, T. F.; Li, X. Y.; Liu, H.; Shu, J.; Zhu, Y. R.; Zhu, R. S. Recent developments in the doping and surface modification of LiFePO4 as cathode material for power lithium ion battery. Ionics 2012, 18, 529–539.

    Article  Google Scholar 

  10. Lee, K. T.; Jeong, S.; Cho, J. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries. Acc. Chem. Res. 2013, 46, 1161–1170.

    Article  Google Scholar 

  11. Lee, M. H.; Kim, T. H.; Kim, Y. S.; Song, H. K. Precipitation revisited: Shape control of LiFePO4 nanoparticles by combinatorial precipitation. J. Phys. Chem. C 2011, 115, 12255–12259.

    Article  Google Scholar 

  12. Zheng, J. C.; Li, X. H.; Wang, Z. X.; Guo, H. J.; Zhou, S. Y. LiFePO4 with enhanced performance synthesized by a novel synthetic route. J. Power Sources 2008, 184, 574–577.

    Article  Google Scholar 

  13. Franger, S.; Le Cras, F.; Bourbon, C.; Rouault, H. Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties. J. Power Sources 2003, 119–121, 252–257.

    Article  Google Scholar 

  14. Arnold, G.; Garche, J.; Hemmer, R.; Ströbele, S.; Vogler, C.; Wohlfahrt-Mehrens, A. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique. J. Power Sources 2003, 119–121, 247–251.

    Article  Google Scholar 

  15. Prosini, P. P.; Carewska, M.; Scaccia, S.; Wisniewski, P.; Passerini, S.; Pasquali, M. A new synthetic route for preparing LiFePO4 with enhanced electrochemical performance. J. Electrochem. Soc. 2002, 149, A886–A890.

    Article  Google Scholar 

  16. Kim, J. K.; Choi, J. W.; Chauhan, G. S.; Ahn, J. H.; Hwang, G. C.; Choi, J. B.; Ahn, H. J. Enhancement of electrochemical performance of lithium iron phosphate by controlled sol-gel synthesis. Electrochim. Acta 2008, 53, 8258–8264.

    Article  Google Scholar 

  17. Hwang, B. J.; Hsu, K. F.; Hu, S. K.; Cheng, M. Y.; Chou, T. C.; Tsay, S. Y.; Santhanam, R. Template-free reverse micelle process for the synthesis of a rod-like LiFePO4/C composite cathode material for lithium batteries. J. Power Sources 2009, 194, 515–519.

    Article  Google Scholar 

  18. Saravanan, K.; Balaya, P.; Reddy, M. V.; Chowdari, B. V. R.; Vittal, J. J. Morphology controlled synthesis of LiFePO4/C nanoplates for Li-ion batteries. Energ. Environ. Sci. 2010, 3, 457–463.

    Article  Google Scholar 

  19. Chen, Z. Y.; Zhu, W.; Zhu, H. L.; Zhang, J. L.; Li, Q. F. Electrochemical performances of LiFePO4/C composites prepared by molten salt method. T. Nonferr. Metal. Soc. 2010, 20, 809–813.

    Article  Google Scholar 

  20. Liu, X. H.; Wang, J. Q.; Zhang, J. Y.; Yang, S. R. Fabrication and characterization of LiFePO4 nanotubes by a sol-gel-AAO template process. Chinese J. Chem. Phys. 2006, 19, 530–534.

    Article  Google Scholar 

  21. Wang, G. X.; Shen, X. P.; Yao, J. One-dimensional nanostructures as electrode materials for lithium-ion batteries with improved electrochemical performance. J. Power Sources 2009, 189, 543–546.

    Article  Google Scholar 

  22. Teng, F.; Santhanagopalan, S.; Lemmens, R.; Geng, X.; Patel, P.; Meng, D. D. In situ growth of LiFePO4 nanorod arrays under hydrothermal condition. Solid State Sci. 2010, 12, 952–955.

    Article  Google Scholar 

  23. Zhu, C. B.; Yu, Y.; Gu, L.; Weichert, K.; Maier, J. Electrospinning of highly electroactive carbon-coated single-crystalline LiFePO4 nanowires. Angew. Chem. Inter. Ed. 2011, 50, 6278–6282.

    Article  Google Scholar 

  24. Koenigsmann, C.; Wong, S. S. One-dimensional noble metal electrocatalysts: A promising structural paradigm for direct methanol fuel cells. Energ. Environ. Sci. 2011, 4, 1161–1176.

    Article  Google Scholar 

  25. Mao, Y. B.; Zhang, F.; Wong, S. S. Ambient template-directed synthesis of single-crystalline alkaline-earth metal fluoride nanowires. Adv. Mater. 2006, 18, 1895–1899.

    Article  Google Scholar 

  26. Santulli, A. C.; Feygenson, M.; Camino, F. E.; Aronson, M. C.; Wong, S. S. Synthesis and characterization of one-dimensional Cr2O3 nanostructures. Chem. Mater. 2011, 23, 1000–1008.

    Article  Google Scholar 

  27. Tiano, A. L.; Koenigsmann, C.; Santulli, A. C.; Wong, S. S. Solution-based synthetic strategies for one-dimensional metal-containing nanostructures. Chem. Commun. 2010, 46, 8093–8130.

    Article  Google Scholar 

  28. Zhang, F.; Sfeir, M. Y.; Misewich, J. A.; Wong, S. S. Room-temperature preparation, characterization, and photoluminescence measurements of solid solutions of various compositionally-defined single-crystalline alkaline-earth-metal tungstate nanorods. Chem. Mater. 2008, 20, 5500–5512.

    Article  Google Scholar 

  29. Zhang, F.; Wong, S. S. Controlled synthesis of semiconducting metal sulfide nanowires. Chem. Mater. 2009, 21, 4541–4554.

    Article  Google Scholar 

  30. Zhou, H. J.; Park, T. J.; Wong, S. S. Synthesis, characterization, and photocatalytic properties of pyrochlore Bi2Ti2O7 nanotubes. J. Mater. Res. 2006, 21, 2941–2947.

    Article  Google Scholar 

  31. Zhou, H.; Wong, S. S. A facile and mild synthesis of 1-D ZnO, CuO, and α-Fe2O3 nanostructures and nanostructured arrays. ACS Nano 2008, 2, 944–958.

    Article  Google Scholar 

  32. Zhou, H. J.; Zhou, W. P.; Adzic, R. R.; Wong, S. S. Enhanced electrocatalytic performance of one-dimensional metal nanowires and arrays generated via an ambient, surfactantless synthesis. J. Phys. Chem. C 2009, 113, 5460–5466.

    Article  Google Scholar 

  33. Fisher, C. A. J.; Hart Prieto, V. M.; Islam, M. S. Lithium battery materials LiMPO4 (M = Mn, Fe, Co, and Ni): Insights into defect association, transport mechanisms, and doping behavior. Chem. Mater. 2008, 20, 5907–5915.

    Article  Google Scholar 

  34. Morgan, D.; Van der Ven, A.; Ceder, G. Li Conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) Olivine Materials. Electrochem. Solid-State Lett. 2004, 7, A30–A32.

    Article  Google Scholar 

  35. Hong, Y. S.; Ryu, K. S.; Park, Y. J.; Kim, M. G.; Lee, J. M.; Chang, S. H. Amorphous FePO4 as 3 V cathode material for lithium secondary batteries. J. Mater. Chem. 2002, 12, 1870–1874.

    Article  Google Scholar 

  36. Kim, S. W.; Ryu, J.; Park, C. B.; Kang, K. Carbon nanotube-amorphous FePO4 core-shell nanowires as cathode material for Li ion batteries. Chem. Commun. 2010, 46, 7409–7411.

    Article  Google Scholar 

  37. Liu, Y. L.; Xu, Y. H.; Han, X. G.; Pellegrinelli, C.; Zhu, Y. J.; Zhu, H. L.; Wan, J. Y.; Chung, A. C.; Vaaland, O.; Wang, C. S. et al. Porous amorphous FePO4 nanoparticles connected by single-wall carbon nanotubes for sodium ion battery cathodes. Nano Lett. 2012, 12, 5664–5668.

    Article  Google Scholar 

  38. Patete, J. M.; Peng, X.; Koenigsmann, C.; Xu, Y.; Karn, B.; Wong, S. S. Viable methodologies for the synthesis of high-quality nanostructures. Green Chem. 2011, 13, 482–519.

    Article  Google Scholar 

  39. Koenigsmann, C.; Santulli, A. C.; Sutter, E.; Wong, S. S. Ambient, surfactantless synthesis, growth mechanism, and size-dependent electrocatalytic behavior of high-quality, single crystalline palladium nanowires. ACS Nano 2011, 5, 7471–7487.

    Article  Google Scholar 

  40. Park, T. J.; Mao, Y. B.; Wong, S. S. Synthesis and characterization of multiferroic BiFeO3 nanotubes. Chem. Commun. 2004, 2708–2709.

    Google Scholar 

  41. Zhou, H.; Yiu, Y.; Aronson, M. C.; Wong, S. S. Ambient template synthesis of multiferroic MnWO4 nanowires and nanowire arrays. J. Solid State Chem. 2008, 181, 1539–1545.

    Article  Google Scholar 

  42. Koenigsmann, C.; Sutter, E.; Chiesa, T. A.; Adzic, R. R.; Wong, S. S. Highly enhanced electrocatalytic oxygen reduction performance observed in bimetallic palladium-based nanowires prepared under ambient, surfactantless conditions. Nano Lett. 2012, 12, 2013–2020.

    Article  Google Scholar 

  43. Singh, S.; Krupanidhi, S. B. Synthesis, structural characterization and ferroelectric properties of Pb0.76Ca0.24TiO3 nanotubes. Mater. Chem. Phys. 2011, 131, 443–448.

    Article  Google Scholar 

  44. Hernandez-Sanchez, B. A.; Chang, K. S.; Scancella, M. T.; Burris, J. L.; Kohli, S.; Fisher, E. R.; Dorhout, P. K. Examination of size-induced ferroelectric phase transitions in template synthesized PbTiO3 nanotubes and nanofibers. Chem. Mater. 2005, 17, 5909–5919.

    Article  Google Scholar 

  45. Yang, Z.; Huang, Y.; Dong, B.; Li, H. L.; Shi, S. Q. Sol-gel template synthesis and characterization of LaCoO3 nanowires. Appl. Phys. A 2006, 84, 117–122.

    Article  Google Scholar 

  46. Kuang, Q.; Lin, Z. W.; Lian, W.; Jiang, Z. Y.; Xie, Z. X.; Huang, R. B.; Zheng, L. S. Syntheses of rare-earth metal oxide nanotubes by the sol-gel method assisted with porous anodic aluminum oxide templates. J. Solid State Chem. 2007, 180, 1236–1242.

    Article  Google Scholar 

  47. Zhang, F.; Wong, S. S. Ambient large-scale template-mediated synthesis of high-aspect ratio single-crystalline, chemically doped rare-earth phosphate nanowires for bioimaging. ACS Nano 2009, 4, 99–112.

    Article  Google Scholar 

  48. Koenigsmann, C.; Wong, S. S. Tailoring chemical composition to achieve enhanced methanol oxidation reaction and methanol-tolerant oxygen reduction reaction performance in palladium-based nanowire systems. ACS Catal. 2013, 3, 2031–2040.

    Article  Google Scholar 

  49. Park, T. J.; Mao, Y. B.; Wong, S. S. Synthesis and Characterization of Multiferroic BiFeO3 Nanotubes. Chem. Commun. 2004, 2708–2709.

    Google Scholar 

  50. Koenigsmann, C.; Santulli, A. C.; Gong, K.; Vukmirovic, M. B.; Zhou, W. P.; Sutter, E.; Wong, S. S.; Adzic, R. R. Enhanced electrocatalytic performance of processed, ultrathin, supported Pd-Pt core-shell nanowire catalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2011, 133, 9783–9795.

    Article  Google Scholar 

  51. Koenigsmann, C.; Sutter, E.; Adzic, R. R.; Wong, S. S. Size- and composition-dependent enhancement of electrocatalytic oxygen reduction performance in ultrathin palladium-gold (Pd1−x Aux) nanowires. J. Phys. Chem. C 2012, 116, 15297–15306.

    Article  Google Scholar 

  52. Zhang, F.; Mao, Y. B.; Park, T. J.; Wong, S. S. Green synthesis and property characterization of single-crystalline perovskite fluoride nanorods. Adv. Funct. Mater. 2008, 18, 103–112.

    Article  Google Scholar 

  53. Song, Y. N.; Yang, S. F.; Zavalij, P. Y.; Whittingham, M. S. Temperature-dependent properties of FePO4 cathode materials. Mater. Res. Bull. 2002, 37, 1249–1257.

    Article  Google Scholar 

  54. Yuan, L. X.; Wang, Z. H.; Zhang, W. X.; Hu, X. L.; Chen, J. T.; Huang, Y. H.; Goodenough, J. B. Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energ. Environ. Sci. 2011, 4, 269–284.

    Article  Google Scholar 

  55. Shiratsuchi, T.; Okada, S.; Yamaki, J. I.; Yamashita, S.; Nishida, T. Cathode performance of olivine-type LiFePO4 synthesized by chemical lithiation. J. Power Sources 2007, 173, 979–984.

    Article  Google Scholar 

  56. Galoustov, K.; Anthonisen, M.; Ryan, D. H.; MacNeil, D. D. Characterization of two lithiation reactions starting with an amorphous FePO4 precursor. J. Power Sources 2011, 196, 6893–6897.

    Article  Google Scholar 

  57. Liu, H. W. Synthesis of nanorods FePO4 via a facile route. J. Nanopart. Res. 2010, 12, 2003–2006.

    Article  Google Scholar 

  58. Scaccia, S.; Carewska, M.; Wisniewski, P.; Prosini, P. P. Morphological investigation of sub-micron FePO4 and LiFePO4 particles for rechargeable lithium batteries. Mater. Res. Bull. 2003, 38, 1155–1163.

    Article  Google Scholar 

  59. Kandori, K.; Kuwae, T.; Ishikawa, T. Control on size and adsorptive properties of spherical ferric phosphate particles. J. Colloid Interf. Sci. 2006, 300, 225–231.

    Article  Google Scholar 

  60. Dean, J. A. Lange’s Handbook of Chemistry; McGraw-Hill Inc.: New York, 1992.

    Google Scholar 

  61. Koenigsmann, C.; Zhou, W. P.; Adzic, R. R.; Sutter, E.; Wong, S. S. Size-dependent enhancement of electrocatalytic performance in relatively defect-free, processed ultrathin platinum nanowires. Nano Lett. 2010, 10, 2806–2811.

    Article  Google Scholar 

  62. Wang, B. F.; Qiu, Y. L.; Ni, S. Y. Ultrafine LiFePO4 cathode materials synthesized by chemical reduction and lithiation method in alcohol solution. Solid State Ionics 2007, 178, 843–847.

    Article  Google Scholar 

  63. Islam, M. S.; Driscoll, D. J.; Fisher, C. A. J.; Slater, P. R. Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem. Mater. 2005, 17, 5085–5092.

    Article  Google Scholar 

  64. Nan, C. Y.; Lu, J.; Li, L. H.; Li, L. L.; Peng, Q.; Li, Y. D. Size and shape control of LiFePO4 nanocrystals for better lithium ion battery cathode materials. Nano Res. 2013, 6, 469–477.

    Article  Google Scholar 

  65. Chung, S. Y.; Choi, S. Y.; Yamamoto, T.; Ikuhara, Y. Orientation-dependent arrangement of antisite defects in lithium iron(II) phosphate crystals. Angew. Chem. Inter. Ed. 2009, 48, 543–546.

    Article  Google Scholar 

  66. Yang, S. F.; Song, Y. N.; Zavalij, P. Y.; Whittingham, M. S. Reactivity, stability and electrochemical behavior of lithium iron phosphates. Electrochem. Commun. 2002, 4, 239–244.

    Google Scholar 

  67. Chen, J.; Graetz, J. Study of antisite defects in hydrothermally prepared LiFePO4 by in situ X-ray diffraction. ACS Appl. Mater. Inter. 2011, 3, 1380–1384.

    Article  Google Scholar 

  68. Sheng, J. Z.; Li, Q. D.; Wei, Q. L.; Zhang, P.; Wang, Q. Q.; Lv, F.; An, Q. Y.; Chen, W.; Mai, L. Q. Metastable amorphous chromium-vanadium oxide nanoparticles with superior performance as a new lithium battery cathode. Nano Res. 2014, 7, 1604–1612.

    Article  Google Scholar 

  69. An, Q. Y.; Zhang, P. F.; Xiong, F. Y.; Wei, Q. L.; Sheng, J. Z.; Wang, Q. Q.; Mai, L. Q. Three-dimensional porous V2O5 hierarchical octahedrons with adjustable pore architectures for long-life lithium batteries. Nano Res. 2015, 8, 481–490.

    Article  Google Scholar 

  70. He, X.; Wang, J.; Kloepsch, R.; Krueger, S.; Jia, H. P.; Liu, H. D.; Vortmann, B.; Li, J. Enhanced electrochemical performance in lithium ion batteries of a hollow spherical lithium-rich cathode material synthesized by a molten salt method. Nano Res. 2014, 7, 110–118.

    Article  Google Scholar 

  71. Yang, J. G.; Han, X. P.; Zhang, X. L.; Cheng, F. Y.; Chen, J. Spinel LiNi0.5Mn1.5O4 cathode for rechargeable lithium ion batteries: Nano vs micro, ordered phase (P4332) vs disordered phase (Fd3m). Nano Res. 2013, 6, 679–687.

    Article  Google Scholar 

  72. Axmann, P.; Stinner, C.; Wohlfahrt-Mehrens, M.; Mauger, A.; Gendron, F.; Julien, C. M. Nonstoichiometric LiFePO4: Defects and related properties. Chem. Mater. 2009, 21, 1636–1644.

    Article  Google Scholar 

  73. Lee, M. H.; Kim, T. H.; Kim, Y. S.; Park, J. S.; Song, H. K. Optimized evolution of a secondary structure of LiFePO4: Balancing between shape and impurities. J. Mater. Chem. 2012, 22, 8228–8234.

    Article  Google Scholar 

  74. Gaberscek, M.; Dominko, R.; Jamnik, J. Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes. Electrochem. Commun. 2007, 9, 2778–2783.

    Article  Google Scholar 

  75. Kou, X. J.; Ke, H.; Zhu, C. B.; Rolfe, P. First-principles study of the chemical bonding and conduction behavior of LiFePO4. Chem. Phys. 2015, 446, 1–6.

    Article  Google Scholar 

  76. Malik, R.; Zhou, F.; Ceder, G. Kinetics of non-equilibrium lithium incorporation in LiFePO4. Nat. Mater. 2011, 10, 587–590.

    Article  Google Scholar 

  77. Meethong, N.; Huang, H. Y. S.; Carter, W. C.; Chiang, Y. M. Size-dependent lithium miscibility gap in nanoscale Li1−x FePO4. Electrochem. Solid-State Lett. 2007, 10, A134–A138.

    Article  Google Scholar 

  78. Chen, Z. H.; Dahn, J. R. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density. J. Electrochem. Soc. 2002, 149, A1184–A1189.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislaus S. Wong.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patete, J.M., Scofield, M.E., Volkov, V. et al. Ambient synthesis, characterization, and electrochemical activity of LiFePO4 nanomaterials derived from iron phosphate intermediates. Nano Res. 8, 2573–2594 (2015). https://doi.org/10.1007/s12274-015-0763-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0763-5

Keywords

Navigation