Skip to main content
Log in

Enhanced electrochemical performance in lithium ion batteries of a hollow spherical lithium-rich cathode material synthesized by a molten salt method

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A high voltage layered Li1.2Ni0.16Co0.08Mn0.56O2 cathode material with a hollow spherical structure has been synthesized by molten-salt method in a NaCl flux. Characterization by X-ray diffraction and scanning electron microscopy confirmed its structure and proved that the as-prepared powder is constituted of small, homogenously sized hollow spheres (1–1.5 μm). The material exhibited enhanced rate capability and high first cycle efficiency due to the good dispersion of secondary particles. Galvanostatic cycling at different temperatures (20, 40, and 60 °C) and a current rate of 2 C (500 mA·g−1) showed no significant capacity fade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  Google Scholar 

  2. Besenhard, J. O.; Winter, M. Insertion reactions in advanced electrochemical energy storage. Pure Appl. Chem. 1998, 70, 603–608.

    Article  Google Scholar 

  3. Winter, M.; Besenhard, J. O. Wiederaufladbare batterien. Chem. Unserer Zeit 1999, 33, 252–266.

    Article  Google Scholar 

  4. Wagner, R.; Preschitschek, N.; Passerini, S.; Leker, J.; Winter, M. Current research trends and prospects among the various materials and designs used in lithium-based batteries. J. Appl. Electrochem. 2013, 43, 481–496.

    Article  Google Scholar 

  5. Ohzuku, T.; Brodd, R. J. An overview of positive-electrode materials for advanced lithium-ion batteries. J. Power Sources 2007, 174, 449–456.

    Article  Google Scholar 

  6. Chen, Z. H.; Dahn, J. R. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density. J. Electrochem. Soc. 2002, 149, A1184–A1189.

    Article  Google Scholar 

  7. Lu, Z. H.; MacNeil, D. D.; Dahn, J. R. Layered cathode materials Li[NixLi(1/3-2x/3)Mn(2/3−x/3)]O2 for lithium-ion batteries. Electrochem. Solid-State Lett. 2001, 4, A191–A194.

    Article  Google Scholar 

  8. Shin, S. S.; Sun, Y. K.; Amine, K. Synthesis and electrochemical properties of Li[Li(1−2x)/3NixMn(2−x)/3]O2 as cathode materials for lithium secondary batteries. J. Power Sources 2002, 112, 634–638.

    Article  Google Scholar 

  9. Johnson, C. S.; Kim, J. S.; Lefief, C.; Li, N.; Vaughey, J. T.; Thackeray, M. M. The significance of the Li2MnO3 component in “composite” xLi2MnO3·(1−x)LiMn0.5Ni0.5O2 electrodes. Electrochem. Comm. 2004, 6, 1085–1091.

    Article  Google Scholar 

  10. Wu, Y.; Manthiram, A. High capacity, surface-modified layered Li[Li(1−x)/3Mn(2−x)/3Ni x/3Co x/3]O2 cathodes with low irreversible capacity loss. Electrochem. Solid-State Lett. 2006, 9, A221–A224.

    Article  Google Scholar 

  11. Zheng, J. M.; Zhang, Z. R.; Wu, X. B.; Dong, Z. X.; Zhu, Z.; Yang, Y. The effects of AlF3 coating on the performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 positive electrode material for lithium-ion battery. J. Electrochem. Soc. 2008, 155, A775–A782.

    Article  Google Scholar 

  12. Wang, J.; He, X.; Paillard, E.; Liu, H. D.; Passerini, S.; Winter, M.; Li, J. Improved rate capability of layered Li-rich cathode for lithium ion battery by electrochemical treatment. ECS Electrochem. Lett. 2013, 2, A78–A80.

    Article  Google Scholar 

  13. Kumai, K.; Miyashiro, H.; Kobayashi, Y.; Takei, K.; Ishikawa, R. Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell. J. Power Sources 1999, 81–82, 715–719.

    Article  Google Scholar 

  14. Kong, W. H.; Li, H.; Huang, X. J.; Chen, L. Q. Gas evolution behaviors for several cathode materials in lithium-ion batteries. J. Power Sources 2005, 142, 285–291.

    Article  Google Scholar 

  15. Holzapfel, M.; Würsig, A.; Scheifele, W.; Vetter, J.; Novák, P. Oxygen, hydrogen, ethylene and CO2 development in lithium-ion batteries. J. Power Sources 2007, 174, 1156–1160.

    Article  Google Scholar 

  16. Kang, S. H.; Thackeray, M. M. Enhancing the rate capability of high capacity xLi2MnO3·(1−x)LiMO2 (M = Mn, Ni, Co) electrodes by Li-Ni-PO4 treatment. Electrochem. Comm. 2009, 11, 748–751.

    Article  Google Scholar 

  17. Song, B. H.; Liu, Z. W.; Lai, M. O.; Lu, L. Structural evolution and the capacity fade mechanism upon long-term cycling in Li-rich cathode material. Phys. Chem. Chem. Phys. 2012, 14, 12875–12883.

    Article  Google Scholar 

  18. Wei, G. Z.; Lu, X.; Ke, F. S.; Huang, L.; Li, J. T.; Wang, Z. X.; Zhou, Z. Y.; Sun, S. G. Crystal habit-tuned nanoplate material of Li[Li1/3-2x/3NixMn2/3−x/3]O2 for high-rate performance lithium-ion batteries. Adv. Mater. 2010, 22, 4364–4367.

    Article  Google Scholar 

  19. Shaju, K. M.; Bruce, P. G. A stoichiometric nano-LiMn2O4 spinel electrode exhibiting high power and stable cycling. Chem. Mater. 2008, 20, 5557–5562.

    Article  Google Scholar 

  20. Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878–2887.

    Article  Google Scholar 

  21. Zhou, L.; Zhao, D. Y.; Lou, X. W. Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv. Mater. 2012, 24, 745–748.

    Article  Google Scholar 

  22. Ding, S. J.; Chen, J. S.; Wang, Z. Y.; Cheah, Y. L.; Madhavi, S.; Hu, X.; Lou, X. W. TiO2 hollow spheres with large amount of exposed (001) facets for fast reversible lithium storage. J. Mater. Chem. 2011, 21, 1677–1680.

    Article  Google Scholar 

  23. Jiang, Y.; Yang, Z.; Luo, W.; Hu, X.; Huang, Y. Hollow 0.3Li2MnO3·0.7LiNi0.5Mn0.5O2 microspheres as a high-performance cathode material for lithium-ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 2954–2960.

    Article  Google Scholar 

  24. Qiao, Y.; Li, S. R.; Yu, Y.; Chen, C. H. Synthesis and electrochemical properties of high performance yolk-structured LiMn2O4 microspheres for lithium ion batteries. J. Mater. Chem. A 2013, 1, 860–867.

    Article  Google Scholar 

  25. Zhou, L.; Zhao, D. Y.; Lou, X. W. LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium-ion batteries. Angew. Chem. Int. Ed. 2012, 51, 239–241.

    Article  Google Scholar 

  26. Bareño, J.; Lei, C. H.; Wen, J. G.; Kang, S. H.; Petrov, I.; Abraham, D. P. Local structure of layered oxide electrode materials for lithium-ion batteries. Adv. Mater. 2010, 22, 1122–1127.

    Article  Google Scholar 

  27. Liu, J. L.; Chen, L.; Hou, M. Y.; Wang, F.; Che, R. C.; Xia, Y. Y. General synthesis of xLi2MnO3·(1−x)LiMn1/3Ni1/3Co1/3O2 nanomaterials by a molten-salt method: Towards a high capacity and high power cathode for rechargeable lithium batteries. J. Mater. Chem. 2012, 22, 25380–25387.

    Article  Google Scholar 

  28. Lutterotti, L.; Matthies, S.; Chateigner, D.; Ferrari, S.; Ricote. J. Rietveld texture and stress analysis of thin films by X-ray diffraction. Mater. Sci. Forum 2002, 408–412, 1603–1608.

    Article  Google Scholar 

  29. Li, J.; Klöpsch, R.; Stan, M. C.; Nowak, S.; Kunze, M.; Winter, M.; Passerini, S. Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with improved rate capability. J. Power Sources 2011, 196, 4821–4825.

    Article  Google Scholar 

  30. Zhang, X. Y.; Jiang, W. J.; Mauger, A.; Qilu, R.; Gendron, F.; Julien, C. M. Minimization of the cation mixing in Li1+x (NMC)1−x O2 as cathode material. J. Power Sources 2010, 195, 1292–1301.

    Article  Google Scholar 

  31. Kawamura, T.; Okada, S.; Yamaki, J. I. Decomposition reaction of LiPF6-based electrolytes for lithium ion cells. J. Power Sources 2006, 156, 547–554.

    Article  Google Scholar 

  32. Li, J.; Klöpsch, R.; Nowak, S.; Kunze, M.; Winter, M.; Passerini, S. Investigations on cellulose-based high voltage composite cathodes for lithium ion batteries. J. Power Sources 2011, 196, 7687–7691.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, X., Wang, J., Kloepsch, R. et al. Enhanced electrochemical performance in lithium ion batteries of a hollow spherical lithium-rich cathode material synthesized by a molten salt method. Nano Res. 7, 110–118 (2014). https://doi.org/10.1007/s12274-013-0378-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0378-7

Keywords

Navigation