Skip to main content
Log in

Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in three-dimensional graphene

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report on the ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles (3–4 nm) embedded in three-dimensional (3D) graphene (SnO2@3DG). SnO2@3DG was fabricated by hydrothermal assembly with ice-templated 3DG and a tin source. The structure and morphology analyses showed that 3DG has an interconnected porous architecture with a large pore volume of 0.578 cm3·g−1 and a high surface area of 470.5 m2·g−1. In comparison, SnO2@3DG exhibited a pore volume of 0.321 cm3·g−1 and a surface area of 237.7 m2·g−1 with a homogeneous distribution of ultrasmall SnO2 nanoparticles in a 3DG network. SnO2@3DG showed a discharge capacity of 1,155 mA·h·g−1 in the initial cycle, a reversible capacity of 432 mA·h·g−1 after 200 cycles at 100 mA·g−1 (with capacity retention of 85.7% relative to that in the second cycle), and a discharge capacity of 210 mA·h·g−1 at a high rate of 800 mA·g−1. This is due to the high distribution of SnO2 nanoparticles in the 3DG network and the enhanced facilitation of electron/ion transport in the electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Huang, X.; Qi, X. Y.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686.

    Article  Google Scholar 

  2. Xu, Y. X.; Huang, X. Q.; Lin, Z. Y.; Zhong, X.; Huang, Y.; Duan, X. F. One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Res. 2013, 6, 65–76.

    Article  Google Scholar 

  3. Li, C.; Shi, G. Q. Three-dimensional graphene architectures. Nanoscale 2012, 4, 5549–5563.

    Article  Google Scholar 

  4. Nardecchia, S.; Carriazo, D.; Luisa Ferrer, M.; Gutierrez, M. C.; del Monte, F. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: Synthesis and applications. Chem. Soc. Rev. 2013, 42, 794–830.

    Article  Google Scholar 

  5. Li, W. L.; Lu, K.; Walz, J. Y. Freeze casting of porous materials: review of critical factors in microstructure evolution. Inter. Mater. Rev. 2012, 57, 37–60.

    Article  Google Scholar 

  6. Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324–4330.

    Article  Google Scholar 

  7. Vickery, J. L.; Patil, A. J.; Mann, S. Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures. Adv. Mater. 2009, 21, 2180–2184.

    Article  Google Scholar 

  8. Ouyang, W. Z.; Sun, J. H.; Memon, J.; Wang, C.; Geng, J. X.; Huang, Y. Scalable preparation of three-dimensional porous structures of reduced graphene oxide/cellulose composites and their application in supercapacitors. Carbon 2013, 62, 501–509.

    Article  Google Scholar 

  9. Deville, S. Freeze-casting of porous ceramics: A review of current achievements and issues. Adv. Energy Mater. 2008, 10, 155–169.

    Article  Google Scholar 

  10. Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.

    Article  Google Scholar 

  11. Chen, S.; Wang, M.; Ye, J. F.; Cai, J. G.; Ma, Y. R.; Zhou, H. H.; Qi, L. M. Kinetics-controlled growth of aligned mesocrystalline SnO2 nanorod arrays for lithium-ion batteries with superior rate performance. Nano Res. 2013, 6, 243–252.

    Article  Google Scholar 

  12. Zhou, X.; Wan, L.-J.; Guo, Y.-G. Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 2013, 25, 2152–2157.

    Article  Google Scholar 

  13. Kim, H.; Kim, S.-W.; Park, Y.-U.; Gwon, H.; Seo, D.-H.; Kim, Y.; Kang, K. SnO2/graphene composite with high lithium storage capability for lithium rechargeable batteries. Nano Res. 2010, 3, 813–821.

    Article  Google Scholar 

  14. Cui, L. F.; Shen, J.; Cheng, F. Y.; Tao, Z. L.; Chen, J. SnO2 nanoparticles@polypyrrole nanowires composite as anode materials for rechargeable lithium-ion batteries. J. Power Sources 2011, 196, 2195–2201.

    Article  Google Scholar 

  15. Huang, Y. S.; Wu, D. Q.; Han, S.; Li, S.; Xiao, L.; Zhang, F.; Feng, X. L. Assembly of tin oxide/graphene nanosheets into 3D hierarchical frameworks for high-performance lithium storage. ChemSusChem 2013, 6, 1510–1515.

    Article  Google Scholar 

  16. Su, D. W.; Ahn, H.-J.; Wang, G. X. SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem. Commun. 2013, 49, 3131–3133.

    Article  Google Scholar 

  17. Wang, Y.-X.; Lim, Y.-G.; Park, M.-S.; Chou, S.-L.; Kim, J. H.; Liu, H.-K.; Dou, S.-X.; Kim, Y.-J. Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances. J. Mater. Chem. A 2014, 2, 529–534.

    Article  Google Scholar 

  18. Xiao, M.; Du, X. S.; Meng, Y. Z.; Gong, K. C. The influence of thermal treatment conditions on the structures and electrical conductivities of graphite oxide. New Carbon Mater. 2004, 19, 92–96.

    Google Scholar 

  19. Nguyen, S. T.; Ruoff, R. S.; Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.

    Article  Google Scholar 

  20. Zhu, Z. Q.; Cheng, F. Y.; Chen, J. Investigation of effects of carbon coating on the electrochemical performance of Li4Ti5O12/C nanocomposites. J. Mater. Chem. A 2013, 1, 9484–9490.

    Article  Google Scholar 

  21. Liang, J. F.; Cai, Z.; Tian, Y.; Li, L. D.; Geng, J. X.; Guo, L. Deposition SnO2/nitrogen-doped graphene nanocomposites on the separator: A new type of flexible electrode for energy storage devices. ACS Appl. Mater. Inter 2013, 5, 12148–12155.

    Article  Google Scholar 

  22. Wang, Z. Y.; Zhang, H.; Li, N.; Shi, Z. J.; Gu, Z. N.; Cao, G. P. Laterally confined graphene nanosheets and graphene/SnO2 composites as high-rate anode materials for lithium-ion batteries. Nano Res. 2010, 3, 748–756.

    Article  Google Scholar 

  23. Wang, L. J.; Zhang, K.; Hu, Z.; Duan, W. C.; Cheng, F. Y.; Chen, J. Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Res. 2014, 7, 199–208.

    Article  Google Scholar 

  24. Cheng, F. Y.; Wang, H. B.; Zhu, Z. Q.; Wang, Y.; Zhang, T. R.; Tao, Z. L.; Chen, J. Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries. Energ Environ. Sci. 2011, 4, 3668–3675.

    Article  Google Scholar 

  25. Gao, H.; Hu, Z.; Zhang, K.; Cheng, F.; Chen, J. Intergrown Li2FeSiO4·LiFePO4-C nanocomposites as high-capacity cathode materials for lithium-ion batteries. Chem. Commun. 2013, 49, 33040–3042.

    Google Scholar 

  26. McAllister, M. J.; Li, J.-L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud’homme, R. K.; et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, L., Jin, Q., Zhu, Z. et al. Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in three-dimensional graphene. Nano Res. 8, 184–192 (2015). https://doi.org/10.1007/s12274-014-0609-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0609-6

Keywords

Navigation