Skip to main content
Log in

Kinetic and molecular docking studies of loganin and 7-O-galloyl-d-sedoheptulose from Corni Fructus as therapeutic agents for diabetic complications through inhibition of aldose reductase

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Aldose reductase (AR) is a key enzyme in the polyol pathway that is strongly implicated in the pathogenesis of diabetic complications. AR inhibitors have been proposed as therapeutic agents for diabetic complications through suppression of sorbitol formation and accumulation. In this study, we evaluated whether two major compounds of Corni Fructus, loganin and 7-O-galloyl-d-sedoheptulose, had an inhibitory effect on diabetic complications through AR inhibition. Because the iridoid glycoside loganin and the low-molecular-weight polyphenol 7-O-galloyl-d-sedoheptulose showed marginal inhibitory activities against rat lens AR (RLAR) and human recombinant AR (HRAR) in inhibition assays, we performed enzyme kinetic analyses and molecular simulation of the interaction of these two compounds with AR to further investigate their potential as inhibitors of diabetic complications. In kinetic analysis using Lineweaver–Burk plots and Dixon plots, loganin and 7-O-galloyl-d-sedoheptulose were both mixed inhibitors of RLAR with inhibition constants (K i) of 27.99 and 128.68 μΜ, respectively. Moreover, molecular docking simulation of both compounds demonstrated negative binding energies (Autodock 4.0 = −6.7; −7.5 kcal/mol; Fred 2.0 = −59.4; −63.2 kcal/mol) indicating a high affinity and tight binding capacity for the active site of the enzyme. Iridoid nucleus and aromatic ring systems and glycoside and sedoheptulose moieties were found to bind tightly to the specificity pocket and the anion binding pocket in RLAR through Phe123, His111, Trp21, Tyr49, His111, and Trp112 residues. Our results clearly indicate that loganin and 7-O-galloyl-d-sedoheptulose have great promise for the treatment of diabetic complications through inhibition of AR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Brownlee, M. 2001. Biochemistry and molecular cell biology of diabetic complications. Nature 414: 813–820.

    Article  CAS  PubMed  Google Scholar 

  • Brownlee, M. 2005. The pathobiology of diabetic complications: A unifying mechanism. Diabetes 54: 1615–1625.

    Article  CAS  PubMed  Google Scholar 

  • Bustanji, Y., I.M. Al-Masri, A. Qasem, A.G. Al-Bakri, and M.O. Taha. 2009. In silico screening for non-nucleoside HIV-1 reverse transcriptase inhibitors using physicochemical filters and high-throughput docking followed by in vitro evaluation. Chemical Biology & Drug Design 74: 258–265.

    Article  CAS  Google Scholar 

  • Chang, J.S., L.C. Chiang, F.F. Hsu, and C.C. Lin. 2004. Chemoprevention against hepatocellular carcinoma of Cornus officinalis in vitro. American Journal of Chinese Medicine 32: 717–725.

    Article  PubMed  Google Scholar 

  • Collins, J.G., and C.N. Corder. 1977. Aldose reductase and sorbitol dehydrogenase distribution in substructures of normal and diabetic rat lens. Investigative Ophthalmology & Visual Science 16: 242–243.

    CAS  Google Scholar 

  • Cornish-Bowden, A. 1974. A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. Biochemical Journal 137: 143–144.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dixon, M. 1953. The determination of enzyme inhibitor constants. Biochemical Journal 55: 170–171.

    CAS  PubMed Central  PubMed  Google Scholar 

  • El-Kabbani, O., S.E. Old, S.L. Ginell, and D.A. Carper. 1999. Aldose and aldehyde reductases: Structure-function studies on the coenzyme and inhibitor-binding sites. Molecular Vision 5: 20.

    CAS  PubMed  Google Scholar 

  • El-Kabbani, O., and A. Podjarny. 2007. Selectivity determinants of the aldose and aldehyde reductase inhibitor-binding sites. Cellular and Molecular Life Sciences 64: 1970–1978.

    Article  CAS  PubMed  Google Scholar 

  • El-Kabbani, O., F. Ruiz, C. Darmanin, and R.T. Chung. 2004. Aldose reductase structure: Implications for mechanism and inhibition. Cellular and Molecular Life Sciences 61: 750–762.

    Article  CAS  PubMed  Google Scholar 

  • Gabbay, K.H. 1973. The sorbitol pathway and the complications of diabetes. New England Journal of Medicine 288: 831–836.

    Article  CAS  PubMed  Google Scholar 

  • Gao, D., Q. Li, Z. Gao, and L. Wang. 2012. Antidiabetic effects of Corni Fructus extract in streptozotocin-induced diabetic rats. Yonsei Medical Journal 53: 691–700.

    Article  PubMed Central  PubMed  Google Scholar 

  • Halder, N., S. Joshi, and S.K. Gupta. 2003. Lens aldose reductase inhibiting potential of some indigenous plants. Journal of Ethnopharmacology 86: 113–116.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, D.H., K.M. Bohren, D. Ringe, G.A. Petsko, and K.H. Gabbay. 1994. An anion binding site in human aldose reductase: mechanistic implications for the binding of citrate, cacodylate, and glucose 6-phosphate. Biochemistry 33: 2011–2020.

    Article  CAS  PubMed  Google Scholar 

  • Hayman, S., and J.H. Kinoshita. 1965. Isolation and properties of lens aldose reductase. Journal of Biological Chemistry 240: 877–882.

    CAS  PubMed  Google Scholar 

  • Heath, H., and Y.C. Hamlett. 1976. The sorbitol pathway: effect of streptozotocin induced diabetes and the feeding of a sucrose-rich diet on glucose, sorbitol and fructose in the retina, blood and liver of rats. Diabetologia 12: 43–46.

    Article  CAS  PubMed  Google Scholar 

  • Jung, H.A., H.E. Moon, S.H. Oh, B.W. Kim, H.S. Sohn, and J.S. Choi. 2012. Kinetics and molecular docking studies of kaempferol and its prenylated derivatives as aldose reductase inhibitors. Chemico-Biological Interactions 197: 110–118.

    Article  CAS  PubMed  Google Scholar 

  • Kador, P.F. 1988. The role of aldose reductase in the development of diabetic complications. Medicinal Research Reviews 8: 325–352.

    Article  CAS  PubMed  Google Scholar 

  • Kawanishi, K., H. Ueda, and M. Moriyasu. 2003. Aldose reductase inhibitors from the nature. Current Medicinal Chemistry 10: 1353–1374.

    Article  CAS  PubMed  Google Scholar 

  • Kim, T.J. 1996. Korean Resources Plants, 213. Korea: Seoul National University Publishing.

    Google Scholar 

  • Kinoshita, J.H., and C. Nishimura. 1988. The involvement of aldose reductase in diabetic complications. Diabetes/Metabolism Reviews 4: 323–337.

    Article  CAS  PubMed  Google Scholar 

  • Kohda, H., S. Tanaka, Y. Yamaoka, S. Yahara, T. Nohara, T. Tanimoto, and A. Tanaka. 1989. Studies on lens-aldose-reductase inhibitor in medicinal plants. II. Active constituents of Monochasma savatierii Franch. et Maxim. Chemical & Pharmaceutical Bulletin 37: 3153–3154.

    Article  CAS  Google Scholar 

  • Lineweaver, H., and D. Burk. 1934. The determination of enzyme dissociation constants. Journal of the American Chemical Society 56: 658–666.

    Article  CAS  Google Scholar 

  • Liou, S.S., I.M. Liu, S.F. Hsu, and J.T. Cheng. 2004. Corni fructus as the major herb of Die-Huang-Wan for lowering plasma glucose in Wistar rats. Journal of Pharmacy and Pharmacology 56: 1443–1447.

    Article  CAS  PubMed  Google Scholar 

  • Morris, G.M., R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, and A.J.J. Olson. 2009. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry 30: 2785–2791.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nishimura, C., T. Yamaoka, M. Mizutani, K. Yamashita, T. Akera, and T. Tanimoto. 1991. Purification and characterization of the recombinant human aldose reductase expressed in baculovirus system. Biochimica et Biophysica Acta 1078: 171–178.

    Article  CAS  PubMed  Google Scholar 

  • Park, C.H., J.S. Noh, J.H. Kim, T. Tanaka, Q. Zhao, K. Matsumoto, N. Shibahara, and T. Yokozawa. 2011. Evaluation of morroniside, iridoid glycoside from Corni Fructus, on diabetes-induced alterations such as oxidative stress, inflammation, and apoptosis in the liver of type 2 diabetic db/db mice. Biological and Pharmaceutical Bulletin 34: 1559–1565.

    Article  CAS  PubMed  Google Scholar 

  • Park, C.H., T. Tanaka, and T. Yokozawa. 2013. Anti-diabetic action of 7-O-galloyl-d-sedoheptulose, a polyphenol from Corni Fructus, through ameliorating inflammation and inflammation-related oxidative stress in the pancreas of type 2 diabetics. Biological and Pharmaceutical Bulletin 36: 723–732.

    Article  CAS  PubMed  Google Scholar 

  • Sato, Y., and D.B. Rifkin. 1989. Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-beta 1-like molecule by plasmin during co-culture. Journal of Cell Biology 109: 309–315.

    Article  CAS  PubMed  Google Scholar 

  • Vareed, S.K., M.K. Reddy, R.E. Schutzki, and M.G. Nair. 2006. Anthocyanins in Cornus alternifolia, Cornus controversa, Cornus kousa and Cornus florida fruits with health benefits. Life Sciences 78: 777–784.

    Article  CAS  PubMed  Google Scholar 

  • Yamabe, N., K.S. Kang, Y. Matsuo, T. Tanaka, and T. Yokozawa. 2007. Identification of antidiabetic effect of iridoid glycosides and low molecular weight polyphenol fractions of Corni Fructus, a constituent of Hachimi-jio-gan, in streptozotocin-induced diabetic rats. Biological and Pharmaceutical Bulletin 30: 1289–1296.

    Article  CAS  PubMed  Google Scholar 

  • Yamabe, N., K.S. Kang, C.H. Park, T. Tanaka, and T. Yokozawa. 2009. 7-O-galloyl-d-sedoheptulose is a novel therapeutic agent against oxidative stress and advanced glycation endproducts in the diabetic kidney. Biological and Pharmaceutical Bulletin 32: 657–664.

    Article  CAS  PubMed  Google Scholar 

  • Yamabe, N., J.S. Noh, C.H. Park, K.S. Kang, N. Shibahara, T. Tanaka, and T. Yokozawa. 2010. Evaluation of loganin, iridoid glycoside from Corni Fructus, on hepatic and renal glucolipotoxicity and inflammation in type 2 diabetic db/db mice. European Journal of Pharmacology 648: 179–187.

    Article  CAS  PubMed  Google Scholar 

  • Yokozawa, T., K.S. Kang, C.H. Park, J.S. Noh, N. Yamabe, N. Shibahara, and T. Tanaka. 2010. Bioactive constituents of Corni Fructus: The therapeutic use of morroniside, loganin, and 7-O-galloyl-d-sedoheptulose as renoprotective agents in type 2 diabetes. Drug Discoveries & Therapeutics 4: 223–234.

    CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Korean Ministry of Science, ICT & Future Planning (MSIP) under grant number (NRF-2011-0019745). This research was also supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A6A1028677).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyun Ah Jung or Jae Sue Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, C.M., Jung, H.A., Oh, S.H. et al. Kinetic and molecular docking studies of loganin and 7-O-galloyl-d-sedoheptulose from Corni Fructus as therapeutic agents for diabetic complications through inhibition of aldose reductase. Arch. Pharm. Res. 38, 1090–1098 (2015). https://doi.org/10.1007/s12272-014-0493-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-014-0493-3

Keywords

Navigation