Skip to main content

Advertisement

Log in

Relationship between Hypoxia and Macrobenthic Production in Chesapeake Bay

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Human development has degraded Chesapeake Bay's health, resulting in an increase in the extent and severity of hypoxia (≤2 mg O2 l-1). The Bay's hypoxic zones have an adverse effect on both community structure and secondary production of macrobenthos. From 1996 to 2004, the effect of hypoxia on macrobenthic production was assessed in Chesapeake Bay and its three main tributaries (Potomac, Rappahannock, and York Rivers). Each year, in the summer (late July − early September), 25 random samples of the benthic macrofauna were collected from each system, and macrobenthic production in the polyhaline and mesohaline regions was estimated using Edgar's allometric equation. Fluctuations in macrobenthic production were significantly correlated with dissolved oxygen. Macrobenthic production was 90 % lower during hypoxia relative to normoxia. As a result, there was a biomass loss of ~7,320–13,200 metric tons C over an area of 7,720 km2, which is estimated to equate to a 20 % to 35 % displacement of the Bay's macrobenthic productivity during the summer. While higher consumers may benefit from easy access to stressed prey in some areas, the large spatial and temporal extent of seasonal hypoxia limits higher trophic level transfer, via the inhibition of macrobenthic production. Such a massive loss of macrobenthic production would be detrimental to the overall health of the Bay, as it comes at a time when epibenthic and demersal predators have high-energy demands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agnew, D.J., and M.B. Jones. 1986. Metabolic adaptations of Gammarus duebeni Liljeborg (crustacean, amphipoda) to hypoxia in a sewage-treatment plant. Comparative Biochemistry Physiology A 84: 475–478.

    Article  Google Scholar 

  • Alden III, R.W., D.M. Dauer, J.A. Ranasinghe, L.C. Scott, and R.J. Llansó. 2002. Statistical verification of the Chesapeake Bay benthic index of biotic integrity. Environmetrics 13: 473–498.

    Article  Google Scholar 

  • Altieri, A.H. 2008. Dead zone enhance key fisheries species by providing predation refuge. Ecology 89: 2808–2818.

    Article  Google Scholar 

  • Arias, A.M., and P. Drake. 1994. Structure and production of the benthic macroinvertebrate community in a shallow lagoon in the Bay of Cadiz. Marine Ecology Progress Series 115: 151–167.

    Article  Google Scholar 

  • Baird, D., and H. Milne. 1981. Energy flow in the Ythan Estuary, Aberdeenshine, Scotland. Estuarine and Coastal Shelf Science 12: 455–472.

    Article  Google Scholar 

  • Baird, D., R.R. Christian, C.H. Peterson, and G.A. Johnson. 2004. Consequences of hypoxia on estuarine ecosystems function: energy diversion from consumers to microbes. Ecological Applications 14: 805–822.

    Article  Google Scholar 

  • Banse, K., and S. Mosher. 1980. Adult body mass and annual production/biomass relationships of field populations. Ecological Monographs 50: 353–379.

    Article  Google Scholar 

  • Blake, R.E., and J.E. Duffy. 2012. Changes in biodiversity and environmental stressors influence community structure of an experimental eelgrass Zostera marina system. Marine Ecology Progress Series 470: 41–54.

    Article  Google Scholar 

  • Blumenshine, S.C., and W.M. Kemp. 2000. Food versus habitat and limitation for benthic macrofauna in mesohaline regions of Chesapeake Bay. Ecosystem models of the Chesapeake Bay relating nutrient loadings, environmental conditions, and living resources. Final Report 1998–1999, Chapter I; University of Maryland Center for Environmental Science, Maryland. http://www.chesapeakebay.net/content/publications/cbp_13028.pdf

  • Boesch, D.F. 1973. Classification and community structure of macrobenthos in the Hampton Roads area, Virginia. Marine Biology 21: 226–244.

    Article  Google Scholar 

  • Boesch, D.F. 2000. Measuring the health of the Chesapeake Bay: Toward integration and prediction. Environmental Research Section A 82: 134–142.

    Article  CAS  Google Scholar 

  • Bologna, P.A., and K. Heck Jr. 2002. Impact of habitat edges on density and secondary production of seagrass-associated fauna. Estuaries 25: 1033–1044.

    Article  Google Scholar 

  • Breitburg, D.L. 1990. Near-shore hypoxia in the Chesapeake Bay: patterns and relationships among physical factors. Estuarine, Coastal and Shelf Science 30: 593–609.

    Article  CAS  Google Scholar 

  • Breitburg, D.L. 2002. Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes and fisheries. Estuaries 25: 767–781.

    Article  Google Scholar 

  • Breitburg, D.L., A. Adamack, K.A. Rose, S.E. Kolesar, M.B. Decker, J.E. Purcell, J.E. Keister, and J.H. Cowan Jr. 2003. The pattern and influence of low dissolved oxygen in the Patuxent River, a seasonally hypoxic estuary. Estuaries 26: 280–297.

    Article  CAS  Google Scholar 

  • Brey, T. 1990. Estimating productivity of macroinvertebrates from biomass and mean individual weight. Meeresforschung 32: 329–343.

    Google Scholar 

  • Brey, T. 2001. Population dynamics in benthic invertebrates. A virtual handbook. Version 01.2 http://www.awibremerhaven.de/Benthic/Ecosystem/FoodWeb/Handbook/main.html. Alfred Wegener Institute for Polar and Marine Research, Germany.

  • Brown, J.H., J.F. Gillooly, A.P. Allen, V.M. Savage, and G.B. West. 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.

    Article  Google Scholar 

  • Cooksey, C., and J. Hyland. 2007. Sediment quality of the Lower St. Johns River, Florida: an integrative assessment of benthic fauna, sediment-associated stressors, and general habitat characteristics. Marine Pollution Bulletin 54: 9–21.

    Article  CAS  Google Scholar 

  • Cowles, A., J.E. Hewitt, and R.B. Taylor. 2009. Density, biomass and productivity of small mobile invertebrates in a wide range of coastal habitats. Marine Ecology Progress Series 384: 175–185.

    Article  Google Scholar 

  • Craig, J.K., and L.B. Crowder. 2005. Hypoxia-induced habitat shifts and energetic consequences in Atlantic croaker and brown shrimp on the Gulf of Mexico shelf. Marine Ecology Progress Series 294: 79–94.

    Article  Google Scholar 

  • Cusson, M., and E. Bourget. 2005. Global patterns of macroinvertebrate production in marine benthic habitats. Marine Ecology Progress Series 297: 1–14.

    Article  Google Scholar 

  • Danovaro, R., A. Dell'Anno, A. Pusceddu, C. Gambi, I. Heiner, et al. 2010. The first metazoa living in permanently anoxic conditions. BioMedical Central Biology 8: 1–30.

    Google Scholar 

  • Dauer, D.M., and R.J. Llansó. 2003. Spatial scales and probability based sampling in determining levels of benthic community degradation in the Chesapeake Bay. Environmental Monitoring and Assessment 81: 175–186.

    Article  Google Scholar 

  • Dauer, D.M., A.J. Rodi Jr., and J.A. Ranasinghe. 1992. Effects of low dissolved oxygen events on the macrobenthos of the lower Chesapeake Bay. Estuaries 15: 384–391.

    Article  CAS  Google Scholar 

  • Diaz, R.J. 2001. Overview of hypoxia around the world. Journal of Environmental Quality 30: 275–281.

    Article  CAS  Google Scholar 

  • Diaz, R.J., and R. Rosenberg. 1995. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology an Annual Review 33: 245–303.

    Google Scholar 

  • Diaz, R.J., and R. Rosenberg. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321: 926–929.

    Article  CAS  Google Scholar 

  • Diaz, R.J., and L.C. Schaffner. 1990. The functional role of estuarine benthos. In Perspectives on the Chesapeake Bay: Advances in estuarine sciences, ed. M. Haire and E.C. Krome, 25–56. Virginia: Chesapeake Research Consortium.

    Google Scholar 

  • Diaz, R.J., R.J. Neubauer, L.C. Schaffner, L. Pihl, and S.P. Baden. 1992. Continuous monitoring of dissolved oxygen in an estuary experiencing periodic hypoxia and the effect of hypoxia on macrobenthos and fish. Science of the Total Environment 1: 1055–1068.

    Google Scholar 

  • Dolbeth, M., A.I. Lillebo, P.G. Cardoso, S.M. Ferreira, and M.A. Pardal. 2005. Annual production of estuarine fauna in different environmental conditions: an evaluation of the estimation methods. Journal of Experimental Marine Biology Ecology 326: 115–127.

    Article  Google Scholar 

  • Dolbeth, M., M. Cusson, R. Sousa, and M.A. Pardal. 2012. Secondary production as a tool for better understanding of aquatic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 69: 1230–1253.

    Article  Google Scholar 

  • Douglass, J.G., K.E. France, J.P. Richardson, and J.E. Duffy. 2010. Seasonal and interannual change in a Chesapeake Bay eelgrass community: insights into biotic and abiotic control of community structure. Limnology Oceanography 55: 1499–1520.

    Article  CAS  Google Scholar 

  • Edgar, G.J. 1990. The use of the size structure of benthic macrofaunal communities to estimate faunal biomass and secondary production. Journal of Experimental Marine Biology Ecology 137: 195–214.

    Article  Google Scholar 

  • Edgar, G.J., and N.S. Barrett. 2002. Benthic macrofauna in Tasmanian estuaries: scales of distribution and relationships with environmental variables. Journal of Experimental Marine Biology Ecology 270: 1–24.

    Article  Google Scholar 

  • Edgar, G.J., C. Shaw, G.F. Watson, and L.S. Hammond. 1994. Comparisons of species richness, size-structure and production of benthos in vegetated and unvegetated habitats in Western Port, Victoria. Journal of Experimental Marine Biology and Ecology 176: 201–226.

    Article  Google Scholar 

  • Folk, R.L. 1973. Carbonate petrography in the post-Sorbian age. In Evolving concepts in sedimentology, ed. R.N. Ginsburg, 1–40. Maryland: Johns Hopkins University Press.

    Google Scholar 

  • Hagy, J.D. 2002. Eutrophication, hypoxia, and trophic transfer efficiency in Chesapeake Bay. Ph.D. dissertation, University of Maryland, College Park, MD

  • Hagy, J.D., W.R. Boynton, C.W. Keefe, and K.V. Wood. 2004. Hypoxia in Chesapeake Bay, 1950–2001: Long-term change in relation to nutrient loading and river flow. Estuaries 37: 634–658.

    Article  Google Scholar 

  • Hoback, W.W., and M.C. Barnhart. 1996. Lethal limits and sublethal effects of hypoxia on the amphipod Gammarus pseudolimnaeus. Journal of North American Benthological Society 15: 117–126.

    Article  Google Scholar 

  • Holland, A.F., A.T. Shaughnessy, L.C. Scott, V.A. Dickens, J. Gerritsen, and J.A. Ranainghe. 1988. Long-term benthic monitoring and assessment program for the Maryland portion of Chesapeake Bay: Interpretive report. Maryland Department of Natural Resources: Power Plant Research Program.

    Google Scholar 

  • Kemp, W.M., W.R. Boynton, J.E. Adolf, D.F. Boesch, W.C. Boicourt, et al. 2005. Eutrophication of Chesapeake Bay: Historical trends and ecological interactions. Marine Ecology Progress Series 303: 1–29.

    Article  Google Scholar 

  • Kuo, A.Y., and B.J. Neilson. 1987. Hypoxia and salinity in Virginia estuaries. Estuaries 10: 277–283.

    Article  CAS  Google Scholar 

  • Kuo, A.Y., K. Park, and M.Z. Moustafa. 1991. Spatial and temporal variabilities of hypoxia in the Rappahannock River, Virginia. Estuaries 14: 113–121.

    Article  CAS  Google Scholar 

  • Levin, L.A., W. Ekau, A.J. Gooday, F. Jorissen, J.J. Middelburg, et al. 2009. Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences 6: 2063–2098.

    Article  CAS  Google Scholar 

  • Lindeman, R.L. 1942. The trophic-dynamic aspect of ecology. Ecology 23: 399–418.

    Article  Google Scholar 

  • Llansó, R.J. 1991. Tolerance of low dissolved oxygen and hydrogen sulfide by the polychaete Steblospio benedicti (Webster). Journal of Experimental Marine Biology Ecology 153: 165–178.

    Article  Google Scholar 

  • Llansó, R.J. 1992. Effects of hypoxia on estuarine benthos: the lower Rappahannock River (Chesapeake Bay), a case study. Estuarine and Coastal Shelf Science 35: 491–515.

    Article  Google Scholar 

  • Lohrenz, M.E., M.J. Dag, and T.E. Whitledge. 1990. Enhanced primary production at the plume/oceanic interface of the Mississippi River. Continental Shelf Research 10: 639–664.

    Article  Google Scholar 

  • Long, W.C., B.J. Brylawski, and R.D. Seitz. 2008. Behavioral effects of low dissolved oxygen on the bivalve Macoma balthica. Journal of Experimental Marine Biology Ecology 359: 34–39.

    Article  CAS  Google Scholar 

  • Ludsin, S.A., X. Zhang, S.B. Brandt, M.R. Roman, W.C. Boucourt, et al. 2009. Hypoxia-avoidance by planktivorous fish in Chesapeake Bay: Implication for food web interaction and fish recruitment. Journal of Experimental Marine Biology Ecology 381: 121–131.

    Article  Google Scholar 

  • Möller, P., L. Pihl, and R. Rosenberg. 1985. Benthic faunal energy flow and biological interaction in some shallow marine soft bottom habitats. Marine Ecology Progress Series 27: 109–121.

    Article  Google Scholar 

  • Morin, A., and N. Bourassa. 1992. Modèles empiriques de la production annuelle et du rapport P/B d'inverteébrés benthiques d'eau courantes. Canadian Journal of Fisheries and Aquatic Sciences 49: 532–539.

    Article  Google Scholar 

  • Murphy, R.R., W.M. Kemp, and W.P. Ball. 2011. Long-term trends in Chesapeake Bay seasonal hypoxia, stratification, and nutrient loading. Estuaries and Coasts 34: 1293–1309.

    Article  CAS  Google Scholar 

  • Nestlerode, J.A., and R.J. Diaz. 1998. Effects of periodic environmental hypoxia on predation of a tethered polychaete, Glycera americana: implication for trophic dynamics. Marine Ecology Progress Series 172: 185–195.

    Article  Google Scholar 

  • Newcombe, C.L., W.A. Horne, and B.B. Shepherd. 1939. Studies on the physics and chemistry of estuarine waters in Chesapeake Bay. Journal of Marine Research 2: 87–116.

    Article  CAS  Google Scholar 

  • Nichols, F.H. 1977. Dynamics and production of Pectinaria koreni (Malmgren) in Kiel Bay, West Germany. In Biology of benthic organisms, ed. B.F. Keegan, P.O. Ceidigh, and P.J.S. Boaden, 453–463. Oxford: Pergamon Press.

    Chapter  Google Scholar 

  • Nilsen, M., T. Pedersen, and E.M. Nilssen. 2006. Macrobenthic biomass, productivity (P/B) and production in a high-latitude ecosystem, North Norway. Marine Ecology Progress Series 321: 67–77.

    Article  Google Scholar 

  • Nixon, S.W. 1995. Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia 41: 199–219.

    Article  Google Scholar 

  • Officer, C.B., R.B. Biggs, J.L. Taft, L.E. Cronin, M.A. Tyler, and W.R. Boynton. 1984. Chesapeake Bay anoxia: origin, development, and significance. Science 223: 22–27.

    Article  CAS  Google Scholar 

  • Park, K., A.Y. Kuo, and J. Neilson. 1996. A numerical model study of hypoxia in the tidal Rappahannock River of Chesapeake Bay. Estuarine Coastal Shelf Science 42: 563–581.

    Article  CAS  Google Scholar 

  • Pearson, T.H., and R. Rosenberg. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology, an Annual Review 16: 229–311.

    Google Scholar 

  • Perkins, E.J. 1974. The biology of estuaries and coastal waters. London: Academic.

    Google Scholar 

  • Pihl, L., S.P. Baden, and R.J. Diaz. 1991. Effects of periodic hypoxia on distribution of demersal fish and crustaceans. Marine Biology 108: 349–360.

    Article  Google Scholar 

  • Pihl, L., S.P. Baden, R.J. Diaz, and L.C. Schaffner. 1992. Hypoxia-induced structural changes in the diet of bottom feeding fish and crustacea. Marine Biology 112: 349–361.

    Article  Google Scholar 

  • Plante, C., and J.A. Downing. 1989. Production of freshwater invertebrate populations in lakes. Canadian Journal of Fisheries and Aquatic Sciences 46: 1489–1498.

    Article  Google Scholar 

  • Rabalais, N.N. 2004. Eutrophication. In The Global Coastal Ocean Multiscale Interdisciplinary Processes, The Sea, vol. 13, ed. A.R. Robinson, J. McCarthy, and B.J. Rothschild, 1–46. Boston: Harvard University Press.

    Google Scholar 

  • Rakocinski, C.F. 2012. Evaluating macrobenthic process indicators in relation to organic enrichment and hypoxia. Ecological Indicators 13: 1–12.

    Article  CAS  Google Scholar 

  • Robertson, A.I. 1979. The relationship between annual production: biomass ratios and lifespans for marine macrobenthos. Oecologia 38: 193–202.

    Article  Google Scholar 

  • Rosenberg, R. 1972. Benthic faunal recovery in a Swedish fjord following the closure of a sulphite pulp mill. Oikos 23: 92–108.

    Article  Google Scholar 

  • Sale, J.W., and W.W. Skinner. 1917. The vertical distribution of dissolved oxygen and the precipitation of salt water in certain tidal areas. Franklin Institute Journal 184: 837–848.

    Article  CAS  Google Scholar 

  • SAS Institute. 1989. SAS/STAT® User's Guide, Version 6. 4th edn, Oxford Oxford, Vol. 2. Cary: SAS Institute.

    Google Scholar 

  • Schwinghammer, P., and B. Hargrave. 1986. Partitioning of production and respiration among size groups of organisms in an intertidal benthic community. Marine Ecology Progress Series 31: 131–142.

    Article  Google Scholar 

  • Seitz, R.D., L.S. Marshall Jr., A.H. Hines, and K.L. Clark. 2003. Effects of hypoxia on predator-prey dynamics of the blue crab Callinectes sapidus and the Baltic clam Macoma balthica in Chesapeake Bay. Marine Ecology Progress Series 257: 179–188.

    Article  Google Scholar 

  • Seitz, R.D., D.M. Dauer, R.M. Llansó, and W.C. Long. 2009. Broad-scale effects of hypoxia on benthic community structure in Chesapeake Bay, USA. Journal of Experimental Marine Biology Ecology 381: 4–12.

    Article  Google Scholar 

  • Sprung, M. 1993. Estimating macrobenthic secondary production from body weight and biomass: a field test in a non-boreal intertidal habitat. Marine Ecology Progress Series 100: 103–109.

    Article  Google Scholar 

  • Stow, C.A., and D. Scavia. 2009. Modeling hypoxia in the Chesapeake Bay: Ensemble estimation using a Bayesian hierarchical model. Journal of Marine Systems 76: 244–250.

    Article  Google Scholar 

  • Sturdivant, S.K., R.J. Diaz, and G.R. Cutter. 2012. Bioturbation in a declining oxygen environment, in situ observations from Wormcam. Public Library of Science ONE 7(4): e34539. doi:10.1371/e34539.

    Google Scholar 

  • Sturdivant, S.K., R.D. Seitz, and R.J. Diaz. 2013. Effects of seasonal hypoxia on macrobenthic production and function in the Rappahannock River, Virginia, USA. Marine Ecology Progress Series 490: 53–68.

    Article  CAS  Google Scholar 

  • Telesh, I.V., and V.V. Khlebovich. 2010. Principal processes within estuarine salinity gradient: A review. Marine Pollution Bulletin 61: 149–155.

    Article  CAS  Google Scholar 

  • Theede, H., A. Ponat, K. Hiroki, and C. Schliper. 1969. Studies on the resistance of marine bottom invertebrates to oxygen-deficiency and hydrogen sulphide. Marine Biology 2: 325–337.

    Article  CAS  Google Scholar 

  • Torrans, E.L., and H.P. Clemens. 1982. Physiological and biochemical effects of acute exposure of fish to hydrogen sulfide. Comparative Biochemistry Physiology 71: 183–190.

    CAS  Google Scholar 

  • Tumbiolo, M.L., and J.A. Downing. 1994. An empirical model for the prediction of secondary production in marine benthic invertebrate populations. Marine Ecology Progress Series 114: 165–174.

    Article  Google Scholar 

  • Turner, R.E., N.N. Rabalais, and D. Justic. 2012. Predicting summer hypoxia in the northern Gulf of Mexico: Riverine N, P, and Si loading. Marine Pollution Bulletin 64: 319–324.

    Article  CAS  Google Scholar 

  • Tyson, R.V., and T.H. Pearson. 1991. Modern and ancient continental shelf anoxia: an overview. Geological Society Special Publication 55: 1–24.

    Article  Google Scholar 

  • van Colen, C., F. Montserrat, M. Vincx, P.M.J. Herman, T. Ysebaert, and S. Degraer. 2010. Long-term divergent tidal flat benthic community recovery following hypoxia-induced mortality. Marine Pollution Bulletin 60: 178–186.

    Article  Google Scholar 

  • Vaquer-Sunyer, R., and C.M. Duarte. 2008. Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences 105: 15452–15457.

    Article  CAS  Google Scholar 

  • Vaquer-Sunyer, R., and C.M. Duarte. 2010. Sulfide exposure accelerates hypoxia-driven mortality. Limnology and Oceanography 55: 1075–1082.

    Article  CAS  Google Scholar 

  • Vissman, B. 1990. Sulfide detoxification and tolerance in Nereis (Hediste) diversicolor and Nereis (Neanthes) virens (Annelida: Polychaeta). Marine Ecology Progress Series 59: 229–238.

    Article  Google Scholar 

  • Wannamaker, C.M., and J.A. Rice. 2000. Effects of hypoxia on movements and behavior of selected estuarine organisms from the southeastern United States. Journal of Experimental Marine Biology Ecology 249: 145–163.

    Article  Google Scholar 

  • Warren, L.M. 1977. The ecology of Capitella capitata in British water. Journal of Marine Biological Assessment UK 57: 151–159.

    Article  Google Scholar 

  • Weisberg, S.B., J.A. Ranasinghe, D.M. Dauer, L.C. Schaffner, R.J. Diaz, and J.B. Frithsen. 1997. An estuarine benthic index of biotic integrity (B-IBI) for Chesapeake Bay. Estuaries 20: 149–158.

    Article  Google Scholar 

  • Wilber, D.H., and D.G. Clarke. 1998. Estimating secondary production and benthic consumption in monitoring studies: a case study of the impacts of dredged material disposal in Galveston Bay, Texas. Estuaries 21: 230–245.

    Article  Google Scholar 

  • Winn, R.N., and D.M. Knott. 1992. An evaluation of the survival of experimental populations exposed to hypoxia in the Savannah River estuary. Marine Ecology Progress Series 88: 161–179.

    Article  Google Scholar 

  • Zar, J.H. 1999. Biostatistical Analysis, 4th ed. New Jersey: Prentice Hall.

    Google Scholar 

  • Zeger, S.L., K.Y. Liang, and P.S. Albert. 1988. Models for longitudinal data: A generalized estimation equation approach. Biometrics 44: 1049–1060.

    Article  CAS  Google Scholar 

  • Zimmerman, A.R., and E.A. Canuel. 2000. A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: anthropogenic influence on organic matter composition. Marine Chemistry 69: 117–137.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the staff at Versar and the Old Dominion University for data from the Chesapeake Bay Program's Long-Term Benthic Monitoring Program. Maryland Department of Natural Resources and Virginia DEQ funded the benthic monitoring program. This study was supported in part by NOAA grant NA05NOS4781202 to R.J.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kersey Sturdivant.

Additional information

Communicated by Judy Grassle

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sturdivant, S.K., Díaz, R.J., Llansó, R. et al. Relationship between Hypoxia and Macrobenthic Production in Chesapeake Bay. Estuaries and Coasts 37, 1219–1232 (2014). https://doi.org/10.1007/s12237-013-9763-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-013-9763-4

Keywords

Navigation