Skip to main content
Log in

Effects of periodic hypoxia on distribution of demersal fish and crustaceans

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Effects of periodic hypoxia (O2 < 2 mg l−1) on distribution of three demersal fish species, spot (Leiostomus xanthurus), hogchoker (Trinectes maculatus) and croaker (Micropogonias undulatus), and of two crustacean species, mantis shrimp (Squilla empusa) and blue crab (Callinectes sapidus), were investigated in the lower York River, Chesapeake Bay, USA. Trawl collections were made in four depth strata (5 to 10, 10 to 14, 14 to 20 and > 20 m) during normoxia and hypoxia from 26 June to 20 October 1989. Three periods with hypoxia in the bottom water (below 10 m depth) occurred in mid-July, early August and early September, each with a duration of 6 to 14 d. The demersal fish and crustaceans studied were all affected by hypoxia, and a general migration from deeper to shallower water took place during July and August. However, when oxygen conditions improved after a hypoxic event all species, exceptS. empusa, returned to the deeper areas. The degree of vertical migration was related to levels of oxygen concentration and varied for the different species.M. undulatus was the most sensitive species to low oxygen, followed byL. xanthurus andC. sapidus. T. maculatus andS. empusa were more tolerant and survived in 14 to 25% oxygen saturation by increasing ventilation rate and, forS. empusa, by also increasing blood pigment (haemocyanin) concentration. Periodic hypoxia driven by the spring-neap tidal cycle may represent a natural phenomenon with which the fishes and crustaceans are in a delicate balance. Areas experiencing periodic short-lived hypoxia may be good nursery grounds for fisheries species, and there is no indication that the habitat value in the study area of lower York River is lessened. However, if eutrophication lengthens the time of hypoxia or brings the system closer to anoxia the system may change and become characteristically stressed. The migratory and physiological responses of these species to hypoxia are good indicators of the severity of oxygen stress and could be used as part of an early warning monitoring system for changes in environmental quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonini, E., Brunori, M. (1974). Transport of oxygen; respiratory proteins. In: Hayaishi, O. (ed.) Molecular oxygen in biology: topics in molecular oxygen research. North-Holland, Amsterdam, p. 219–274

    Google Scholar 

  • Baden, S. P., Loo, L.-O., Pihl, L., Rosenberg, R. (1990a). Effects of eutrophication on benthic communities including fish: Swedish west coast. Ambio 19(3): 113–122

    Google Scholar 

  • Baden, S. P., Pihl, L., Rosenberg, R. (1990b). Effects of oxygen depletion on the ecology, blood physiology and fishery of the Norway lobsterNephrops norvegicus. Mar. Ecol. Prog. Ser. 67: 141–155

    Google Scholar 

  • Caldwall, R. L., Dingle, H. (1976). Stomatopods. Scient. Am. 234: 81–89

    Google Scholar 

  • Degobbis, D., Smodlaka, N., Pojed, I., Skrivanic, A., Precali, R. (1979). Increased eutrophication of the Northern Adriatic Sea. Mar. Pollut. Bull. 10: 298–301

    Google Scholar 

  • Diaz, R. J., Neubauer, R. J., Schaffner, L. C., Pihl, L., Baden, S. P. (in press). Continuous monitoring of dissolved oxygen in an estuary experiencing periodic hypoxia and the effect of hypoxia on macrobenthos and fish. In: Proceedings of the Marine Coastal Eutrophication International Conference, Bolonga 1990

  • Diaz, R. J., Schaffner, L. C. (1990). The functional role of estuarine benthos. In: Haire, M., Krome, E. C. (eds.) Perspectives on the Chesapeake Bay: advances in estuarine sciences. CPB/TRS 41/90 Chesapeake Research Consort, Gloucester Point, Virginia, p. 25–56

    Google Scholar 

  • Dovel, W. L., Mihursky, J. A., McErlean, A. J. (1969). Life history aspects of the hogchokerTrinectes maculatus, in the Patuxent River estuary, Maryland. Chesapeake Sci. 10(2): 104–119

    Google Scholar 

  • Falkowski, P. G., Hopkins, T. S., Walsh, J. J. (1980). An analysis of factors affecting oxygen depletion in the New York Bight. J. mar. Res. 38: 479–506

    Google Scholar 

  • Haas, L. W. (1977). The effect of spring-neap tidal cycle on the vertical salinity structure of the James, York and Rappahannock Rivers, Virginia, USA. Estuar. cstl mar. Sci. 5: 485–496

    Google Scholar 

  • Hagerman, L., Baden, S. P. (1988).Nephrops norvegicus: field study of effects of oxygen deficiency on haemocyanin concentration. J. exp. mar. Biol. Ecol. 116: 135–142

    Google Scholar 

  • Harper, D. E., McKinney, L. D., Salzer, R. A., Case, R. J. (1981). The occurrence of hypoxic bottom water off the upper Texas coast and its effects on the benthic biota. Contr. mar. Sci. Univ. Tex. 24: 53–79

    Google Scholar 

  • Hayward, D., Haas, L. W., Boon, J. D., Webb, K. L., Friedland, K. D. (1986). Empirical models of stratification variation in the York River estuary, Virginia, USA. In: Bowman, H. J., Yentsch, C. M., Peterson, W. T. (eds.) Tidal mixing and plankton dynamics. Lecture notes on coastal and estuarine studies, Vol. 17. Springer-Verlag, Berlin, p. 346–367

    Google Scholar 

  • Jørgensen, B. B. (1980). Seasonal oxygen depletion in the bottom waters of a Danish fjord and its effect on the benthic community. Oikos 34: 68–76

    Google Scholar 

  • Kjelson, M. A., Johanson, G. N. (1978). Catch efficiency of a 6.1-meter otter trawl for estuarine fish populations. Trans. Am. Fish. Soc. 107: 246–254

    Google Scholar 

  • Kobylinski, G. J., Sheridan, P. F. (1979). Distribution, abundance, feeding and long-term fluctuations of spotLeiostomus xanthurus, and croakerMicropogonias undulatus, in Apalachicola Bay, Florida, 1972–1977. Contr. mar. Sci. Univ. Tex. 22: 149–161

    Google Scholar 

  • Kuo, A. Y., Neilson, B. J. (1987). Hypoxia and salinity in Virginia estuaries. Estuaries 10: 277–283

    Google Scholar 

  • Lallier, F., Boitel, F., Truchot, J. P. (1987). The effect of ambient oxygen and temperature on haemolymph L-Lactate and Urate concentrations in the shore crabCarcinus maenas. Comp. Biochem. Physiol. 86A(2): 255–260

    Google Scholar 

  • Markle, D. F. (1976). The seasonality of availability and movements of fishes in the Channel of York River, Virginia. Chesapeake Sci. 17(1): 50–55

    Google Scholar 

  • May, E. B. (1973). Extensive oxygen depletion in Mobile Bay, Alabama. Limnol. Ocean. 18: 353–366

    Google Scholar 

  • McCambridge, J. T. Jr., Alden, R. W. (1984). Growth of juvenile spotLeiostomus xanthurus Lacépéde, in the nursery region of the James River, Virginia. Estuaries 7(4B): 478–486

    Google Scholar 

  • Mountford, K., Reynolds, R., Fisher, N. (1989). A telemetric environmental data buoy in Chesapeake Bay. In: Marine Technology Society Proceeding of Marine Data Systems '89, April 1989, New Orleans, p. 17–22

  • Myers, A. C. (1979). Summer and winter burrows of the mantis shrimp,Squilla empusa, in Narragansett Bay, Rhode Island (USA). Estuar. cstl mar. Sci. 8: 87–98

    Google Scholar 

  • Nickerson, K. W., van Holde, K. E. (1971). A comparison of molluscan and arthropod haemocyanin. I. Circular dichroism and absorption spectra. Comp. Biochem. Physiol. 39B: 855–872

    Google Scholar 

  • Officer, C. B., Briggs, R. B., Taft, J. L., Cronin, L. E., Tyler, M. A., Boynton, W. R. (1984). Chesapeake Bay anoxia. Origin, development and significance. Science, N.Y. 223: 22–27

    Google Scholar 

  • Pearson, T. H., Rosenberg, R. (1978). Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. mar. Biol. A. Rev. 16: 229–311

    Google Scholar 

  • Pihl, L. (1989). Effects of oxygen depletion on demersal fish in coastal areas of the south-east Kattegat. Proc. 23rd Eur. mar. Biol. Symp., p. 431–439 [Ryland, J. S., Tyler, P. A. (eds.) Olsen & Olsen, Fredensborg, Denmark]

    Google Scholar 

  • Rockett, M. D., Standard, G. W., Chittenden, M. E. Jr. (1984). Bathymetric distribution, spawning periodicity, sex ratios and size compositions of the mantis shrimp,Squilla empusa, in the northwestern Gulf of Mexico. Fish. Bull. U.S. 82(2): 418–426

    Google Scholar 

  • Rosenberg, R., Loo, L.-O. (1988). Marine eutrophication induced oxygen deficiency: effects on soft bottom fauna, Western Sweden. Ophelia 29: 213–225

    Google Scholar 

  • Schaffner, L. C., Diaz, R. J. 1988). Distribution and abundance of overwintering blue crabs.Callinectes sapidus, in the lower Chesapeake Bay. Estuaries 11: 68–72

    Google Scholar 

  • Setzler-Hamilton, E. M. (1987). Utilization of Chesapeake Bay by early life history stages of fishes. In: Majumdar, S. K., Hall, L. W., Austin, H. M. (eds.) Contaminant problems and management of living Chesapeake Bay resources. The Pennsylvania Academy of Science, Easton, Pennsylvania, p. 63–93

    Google Scholar 

  • Seyle, H. (1976). Stress in health and disease. Butterworth, Boston, Massachusetts.

    Google Scholar 

  • Sheridan, P. F., Trimm, D. C., Baker, B. M. (1984). Reproduction and food habits of seven species of northern Gulf of Mexico fishes. Contr. mar. Sci. Univ. Tex. 27: 175–204

    Google Scholar 

  • Sokal, R. R., Rohlf, F. J. (1969). Biometry. The principles and practice of statistics in biological research. W. H. Freeman & Co., San Francisco

    Google Scholar 

  • Stachowitsch M. (1984). Mass mortality in the Gulf of Trieste: the course of community destruction. Pubbl. Staz. zool. Napoli (I. Mar. Ecol.) 5: 243–264

    Google Scholar 

  • Subrahanyam, C. B. (1980). Oxygen consumption of estuarine fish in relation to external oxygen tension. Comp. Biochem. Physiol. 67: 129–133

    Google Scholar 

  • Turner, R. E., Schroeder, W. W., Wiseman, W. M. J. Jr. (1987). The role of stratification in the deoxygenation of Mobile Bay and adjacent shelf bottom waters. Estuaries 10(1): 13–19

    Google Scholar 

  • Van Engel, W. A. (1987). Factors affecting the distribution and abundance of the blue crab in the Chesapeake Bay. In: Majumdar, S. K., Hall, L. W., Austin, H. M. (eds.) Contaminant problems and management of living Chesapeake Bay resources. The Pennsylvania Academy of Science, Easton, Pennsylvania, p. 177–209

    Google Scholar 

  • Zar, J. H. (1984). Biostatistical analysis, 2nd edn. Prentice-Hall, Inc., Englewood Cliffs

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Contribution of the Virginia Institute of Marine Science

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pihl, L., Baden, S.P. & Diaz, R.J. Effects of periodic hypoxia on distribution of demersal fish and crustaceans. Mar. Biol. 108, 349–360 (1991). https://doi.org/10.1007/BF01313644

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313644

Keywords

Navigation