Skip to main content

Advertisement

Log in

Coastal Hypoxia and the Importance of Benthic Macrofauna Communities for Ecosystem Functioning

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Coastal ecosystems are important because of the vital ecosystem functions and services they provide, but many are threatened by eutrophication and hypoxia. This results in loss of biodiversity and subsequent changes in ecosystem functioning. Consequently, the need for empirical field studies regarding biodiversity-ecosystem functioning in coastal areas has been emphasized. The present field study quantified the links between benthic macrofaunal communities (abundance, biomass, and species richness), sediment oxygen consumption, and solute fluxes (NO3  + NO2 , NH4 +, PO4 3−, SiO4, Fe, Mn) along a 7.5-km natural gradient of seasonal hypoxia in the coastal northern Baltic Sea. Sampling was done in late August 2010 in the middle archipelago zone of the Hanko peninsula, Finland. As predicted, the macrofaunal communities were decimated with increasing hypoxia, and the nutrient transformation processes were changed at the sediment-water interface, with notably higher effluxes of phosphate and ammonium from the sediment. Solute fluxes varied even during normoxia, which implies a high context-dependency, and could be explained by even small variations in environmental variables such as organic matter and C/N ratios. Importantly, the low diversity benthic macrofaunal communities, which were dominated by Macoma balthica and the invasive Marenzelleria spp., had a large influence on the solute fluxes, especially under normoxia, but also under hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aller, R.C., and J.Y. Aller. 1998. The effect of biogenic irrigation intensity and solute exchange on diagenetic reaction rates in marine sediments. Journal of Marine Research 56: 905–936.

    Article  CAS  Google Scholar 

  • Alves, J.M., A. Caliman, R.D. Guariento, M.P. Figueiredo-Barros, L.S. Carneiro, V.F. Farjalla, R.L. Bozelli, and F.A. Esteves. 2010. Stoichiometry of benthic inverterbrate nutrient recycling: interspecific variation and the role of body mass. Aquatic Ecology 44: 421–430.

    Article  CAS  Google Scholar 

  • Anderson, M.J., R.N. Gorley, and K.R. Clarke. 2008. PERMANOVA+ for PRIMER. Guide to software and statistical methods, 214 pp.

  • Banta, G.T., M. Holmer, M.H. Jensen, and E. Kristensen. 1999. Effects of two polychaete worms, Nereis diversicolor and Arenicola marina, on aerobic and anaerobic decomposition in a sandy marine sediment. Aquatic Microbial Ecology 19: 189–204.

    Article  Google Scholar 

  • Barbier, E.B., S.D. Hacker, C. Kennedy, E.W. Koch, A.C. Stier, and B.R. Silliman. 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs 81: 169–193.

    Article  Google Scholar 

  • Bianchi, T.S., B. Johansson, and R. Elmgren. 2000. Breakdown of phytoplankton pigments in Baltic sediments: effects of anoxia and loss of deposit-feeding macrofauna. Journal of Experimental Marine Biology and Ecology 251: 161–183.

    Article  CAS  Google Scholar 

  • Bonsdorff, E., E.M. Blomqvist, J. Mattila, and A. Norkko. 1997. Coastal eutrophication: causes, consequences and perspectives in the archipelago areas of the northern Baltic Sea. Estuarine, Coastal and Shelf Science 44(Supplement A): 63–72.

    Article  Google Scholar 

  • Braeckman, U., M.Y. Foshtomi, D. Gansbeke, F. Meysman, K. Soetaert, M. Vincx, and J. Vanaverbeke. 2014. Variable importance of macrofaunal functional biodiversity for biogeochemical cycling in temperate coastal sediments. Ecosystems 17: 720–737.

    CAS  Google Scholar 

  • Carstensen, J., D.J. Conley, E. Bonsdorff, B.G. Gustafsson, S. Hietanen, U. Janas, T. Jilbert, A. Maximov, A. Norkko, J. Norkko, D.C. Reed, C.P. Slomp, K. Timmermann, and M. Voss. 2014. Hypoxia in the Baltic Sea: biogeochemical cycles, benthic fauna, and management. Ambio 43: 26–36.

    Article  CAS  Google Scholar 

  • Chapin, F.S. III, B.H. Walker, R.J. Hobbs, D.U. Hooper, J.H. Lawton, O.E. Sala, and D. Tilman. 1997. Biotic control over the functioning of ecosystems. Science 277: 500–504.

    Article  CAS  Google Scholar 

  • Childs, C.R., N.N. Rabalais, R.E. Turner, and L.M. Proctor. 2002. Sediment denitrification in the Gulf of Mexico zone of hypoxia. Marine Ecology Progress Series 240: 285–290.

    Article  CAS  Google Scholar 

  • Clarke, K.R., and R.N. Gorley. 2006. PRIMER v6: User Manual / Tutorial. Plymouth: PRIMER-E.

  • Clarke, K.R., R.N. Gorley, P.J. Somerfield, and R.M. Warwick. 2014. Change in marine communities: an approach to statistical analysis and interpretation, 3rd edition. PRIMER-E: Plymouth.

  • Conley, D.J., J. Carstensen, G. Ærtebjerg, P.B. Christensen, T. Dalsgaard, J.L.S. Hansen, and A.B. Josefson. 2007. Long-term changes and impacts of hypoxia in Danish coastal waters. Ecological Applications 17: S165–S184.

    Article  Google Scholar 

  • Conley, D.J., J. Carstensen, J. Aigars, P. Axe, E. Bonsdorff, T. Eremina, B.M. Haahti, C. Humborg, P. Jonsson, J. Kotta, C. Lannegren, U. Larsson, A. Maximov, M.R. Medina, E. Lysiak-Pastuszak, N. Remeikaite-Nikiene, J. Walve, S. Wilhelms, and L. Zillen. 2011. Hypoxia is increasing in the coastal zone of the Baltic Sea. Environmental Science & Technology 45: 6777–6783.

    Article  CAS  Google Scholar 

  • Conley, D.J., J. Carstensen, R. Vaquer-Sunyer, and C.M. Duarte. 2009. Ecosystem thresholds with hypoxia. Hydrobiologia 629: 21–29.

    Article  CAS  Google Scholar 

  • Cowan, J.W., and W. Boynton. 1996. Sediment-water oxygen and nutrient exchanges along the longitudinal axis of Chesapeake Bay: seasonal patterns, controlling factors and ecological significance. Estuaries 19: 562–580.

    Article  CAS  Google Scholar 

  • Diaz, R.J., and R. Rosenberg. 1995. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology - an Annual Review 33(33): 245–303.

    Google Scholar 

  • Diaz, R.J., and R. Rosenberg. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321: 926–929.

    Article  CAS  Google Scholar 

  • Gilbert, D., N.N. Rabalais, R.J. Diaz, and J. Zhang. 2010. Evidence for greater oxygen decline rates in the coastal ocean than in the open ocean. Biogeosciences 7: 2283–2296.

    Article  CAS  Google Scholar 

  • Glud, R.N. 2008. Oxygen dynamics of marine sediments. Marine Biology Research 4: 243–289.

    Article  Google Scholar 

  • Helminen, H., E. Juntura, J. Koponen, P. Laihonen, and H. Ylinen. 1998. Assessing of long-distance background nutrient loading to the Archipelago Sea, northern Baltic, with a hydrodynamic model. Environmental Modelling & Software 13: 511–518.

    Article  Google Scholar 

  • Hietanen, S., and K. Lukkari. 2007. Effects of short-term anoxia on benthic denitrification, nutrient fluxes and phosphorus forms in coastal Baltic sediment. Aquatic Microbial Ecology 49: 293–302.

    Article  Google Scholar 

  • Hietanen, S., A.O. Laine, and K. Lukkari. 2007. The complex effects of the invasive polychaetes Marenzelleria spp. on benthic nutrient dynamics. Journal of Experimental Marine Biology and Ecology 352: 89–102.

    Article  CAS  Google Scholar 

  • Ieno, E.N., M. Solan, P. Batty, and G.J. Pierce. 2006. How biodiversity affects ecosystem functioning: roles of infaunal species richness, identity and density in the marine benthos. Marine Ecology Progress Series 311: 263–271.

    Article  Google Scholar 

  • Josefson, A.B., J. Norkko, and A. Norkko. 2012. Burial and decomposition of plant pigments in surface sediments of the Baltic Sea: role of oxygen and benthic fauna. Marine Ecology Progress Series 455: 33–49.

    Article  CAS  Google Scholar 

  • Karlson, K., E. Bonsdorff, and R. Rosenberg. 2007. The impact of benthic macrofauna for nutrient fluxes from Baltic Sea sediments. Ambio 36: 161–167.

    Article  CAS  Google Scholar 

  • Kauppi, L., A. Norkko, and J. Norkko. 2015. Large-scale species invasion into a low-diversity system: spatial and temporal distribution of the invasive polychaetes Marenzelleria spp. in the Baltic Sea. Biological Invasions 17: 2055–2074.

    Article  Google Scholar 

  • Kemp, W.M., W.R. Boynton, J.E. Adolf, D.F. Boesch, W.C. Boicourt, G. Brush, J.C. Cornwell, T.R. Fisher, P.M. Glibert, J.D. Hagy, L.W. Harding, E.D. Houde, D.G. Kimmel, W.D. Miller, R.I.E. Newell, M.R. Roman, E.M. Smith, and J.C. Stevenson. 2005. Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Marine Ecology Progress Series 303: 1–29.

    Article  Google Scholar 

  • Kemp, W.M., E.M. Smith, M. MarvinDiPasquale, and W.R. Boynton. 1997. Organic carbon balance and net ecosystem metabolism in Chesapeake Bay. Marine Ecology Progress Series 150: 229–248.

    Article  CAS  Google Scholar 

  • Kemp, W.M., J.M. Testa, D.J. Conley, D. Gilbert, and J.D. Hagy. 2009. Temporal responses of coastal hypoxia to nutrient loading and physical controls. Biogeosciences 6: 2985–3008.

    Article  CAS  Google Scholar 

  • Kristensen, E. 2000. Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426: 1–24.

    Article  CAS  Google Scholar 

  • Kristensen, E., M. Delefosse, C.O. Quintana, M.R. Flindt, and T. Valdemarsen. 2014. Influence of benthic macrofauna community shifts on ecosystem functioning in shallow estuaries. Frontiers in Marine Science 1.

  • Larsen, T.H., N.M. Williams, and C. Kremen. 2005. Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecology Letters 8: 538–547.

    Article  Google Scholar 

  • Levin, L.A., D.F. Boesch, A. Covich, C. Dahm, C. Erséus, K.C. Ewel, R.T. Kneib, A. Moldenke, M.A. Palmer, P. Snelgrove, D. Strayer, and J.M. Weslawski. 2001. The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems 4: 430–451.

    Article  CAS  Google Scholar 

  • Lohrer, A.M., S.F. Thrush, and M.M. Gibbs. 2004. Bioturbators enhance ecosystem function through complex biogeochemical interactions. Nature 431: 1092–1095.

    Article  CAS  Google Scholar 

  • Lohrer, A.M., S.F. Thrush, J.E. Hewitt, and C. Kraan. 2015. The up-scaling of ecosystem functions in a heterogeneous world. Scientific Reports 5.

  • Lotze, H.K., H.S. Lenihan, B.J. Bourque, R.H. Bradbury, R.G. Cooke, M.C. Kay, S.M. Kidwell, M.X. Kirby, C.H. Peterson, and J.B.C. Jackson. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312: 1806–1809.

    Article  CAS  Google Scholar 

  • Marinelli, R.L., and T.J. Williams. 2003. Evidence for density-dependent effects of infauna on sediment biogeochemistry and benthic–pelagic coupling in nearshore systems. Estuarine, Coastal and Shelf Science 57: 179–192.

    Article  CAS  Google Scholar 

  • Mermillod-Blondin, F., and R. Rosenberg. 2006. Ecosystem engineering: the impact of bioturbation on biogeochemical processes in marine and freshwater benthic habitats. Aquatic Sciences 68: 434–442.

    Article  CAS  Google Scholar 

  • Mort, H.P., C.P. Slomp, B.G. Gustafsson, and T.J. Andersen. 2010. Phosphorus recycling and burial in Baltic Sea sediments with contrasting redox conditions. Geochimica et Cosmochimica Acta 74: 1350–1362.

    Article  CAS  Google Scholar 

  • Mortimer, C.H. 1941. The exchange of dissolved substances between mud and water in lakes. Journal of Ecology 29: 280–329.

    Article  CAS  Google Scholar 

  • Norkko, A., and E. Bonsdorff. 1996. Rapid zoobenthic community responses to accumulations of drifting algae. Marine Ecology Progress Series 131: 143–157.

    Article  Google Scholar 

  • Norkko, A., A. Villnäs, J. Norkko, S. Valanko, and C. Pilditch. 2013. Size matters: implications of the loss of large individuals for ecosystem function. Scientific Reports 3.

  • Norkko, J., J. Gammal, J.E. Hewitt, A.B. Josefson, J. Carstensen, and A. Norkko. 2015. Seafloor ecosystem function relationships: in situ patterns of change across gradients of increasing hypoxic stress. Ecosystems 18: 1424–1439.

    Article  CAS  Google Scholar 

  • Norkko, J., D.C. Reed, K. Timmermann, A. Norkko, B.G. Gustafsson, E. Bonsdorff, C.P. Slomp, J. Carstensen, and D.J. Conley. 2012. A welcome can of worms? Hypoxia mitigation by an invasive species. Global Change Biology 18: 422–434.

    Article  Google Scholar 

  • Norling, K., R. Rosenberg, S. Hulth, A. Gremare, and E. Bonsdorff. 2007. Importance of functional biodiversity and species-specific traits of benthic fauna for ecosystem functions in marine sediment. Marine Ecology Progress Series 332: 11–23.

    Article  CAS  Google Scholar 

  • Pearson, T.H., and R. Rosenberg. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology - an Annual Review 16: 229–311.

    Google Scholar 

  • Quintana, C.O., E. Kristensen, and T. Valdemarsen. 2013. Impact of the invasive polychaete Marenzelleria viridis on the biogeochemistry of sandy marine sediments. Biogeochemistry 115: 95–109.

  • Rabalais, N.N., R.J. Diaz, L.A. Levin, R.E. Turner, D. Gilbert, and J. Zhang. 2010. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7: 585–619.

    Article  CAS  Google Scholar 

  • Rabalais, N.N., L.E. Smith, D.E. Harper, and D. Justic. 2001. Effects of seasonal hypoxia on continental shelf benthos. In Coastal hypoxia: consequences for living resources and ecosystems, eds. N.N. Rabalais, and R.E. Turner, 211–240. Washington DC: American Geophysical Union.

    Chapter  Google Scholar 

  • Rabalais, N.N., R.E. Turner, and W.J. Wiseman. 2002. Gulf of Mexico hypoxia, aka "the dead zone". Annual Review of Ecology and Systematics 33: 235–263.

    Article  Google Scholar 

  • Renz, J.R., and S. Forster. 2013. Are similar worms different? A comparative tracer study on bioturbation in the three sibling species Marenzelleria arctia, M. viridis, and M. neglecta from the Baltic Sea. Limnology and Oceanography 58: 2046–2058.

    Article  Google Scholar 

  • Sereda, J.M., and J.J. Hudson. 2011. Empirical models for predicting the excretion of nutrients (N and P) by aquatic metazoans: taxonomic differences in rates and element ratios. Freshwater Biology 56: 250–263.

    Article  CAS  Google Scholar 

  • Smith, S.V., and J.T. Hollibaugh. 1989. Carbon-controlled nitrogen cycling in a marine macrocosm - an ecosystem-scale model for managing cultural eutrophication. Marine Ecology Progress Series 52: 103–109.

    Article  Google Scholar 

  • Smith, S.V., D.P. Swaney, L. Talaue-McManus, J.D. Bartley, P.T. Sandhei, C.J. McLaughlin, V.C. Dupra, C.J. Crossland, R.W. Buddemeier, B.A. Maxwell, and F. Wulff. 2003. Humans, hydrology, and the distribution of inorganic nutrient loading to the ocean. Bioscience 53: 235–245.

    Article  Google Scholar 

  • Snelgrove, P.V.R., S.F. Thrush, D.H. Wall, and A. Norkko. 2014. Real world biodiversity-ecosystem functioning: a seafloor perspective. Trends in Ecology & Evolution 29: 398–405.

    Article  Google Scholar 

  • Sun, M.-Y., and J. Dai. 2005. Relative influences of bioturbation and physical mixing on degradation of bloom-derived particulate organic matter: clue from microcosm experiments. Marine Chemistry 96: 201–218.

    Article  CAS  Google Scholar 

  • Vahtera, E., D.J. Conley, B.G. Gustafsson, H. Kuosa, H. Pitkanen, O.P. Savchuk, T. Tamminen, M. Viitasalo, M. Voss, N. Wasmund, and F. Wulff. 2007. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. Ambio 36: 186–194.

    Article  CAS  Google Scholar 

  • Vallius, H. 2006. Permanent seafloor anoxia in coastal basins of the northwestern gulf of Finland, Baltic Sea. Ambio 35: 105–108.

    Article  CAS  Google Scholar 

  • Vaquer-Sunyer, R., and C.M. Duarte. 2008. Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences of the United States of America 105: 15452–15457.

    Article  CAS  Google Scholar 

  • Villnäs, A., and A. Norkko. 2011. Benthic diversity gradients and shifting baselines: implications for assessing environmental status. Ecological Applications 21: 2172–2186.

    Article  Google Scholar 

  • Villnäs, A., J. Norkko, S. Hietanen, A.B. Josefson, K. Lukkari, and A. Norkko. 2013. The role of recurrent disturbances for ecosystem multifunctionality. Ecology 94: 2275–2287.

    Article  Google Scholar 

  • Villnäs, A., J. Norkko, K. Lukkari, J. Hewitt, and A. Norkko. 2012. Consequences of increasing hypoxic disturbance on benthic communities and ecosystem functioning. PloS One 7: e44920.

    Article  Google Scholar 

  • Virtasalo, J.J., T. Kohonen, I. Vuorinen, and T. Huttula. 2005. Sea bottom anoxia in the Archipelago Sea, northern Baltic Sea - implications for phosphorus remineralization at the sediment surface. Marine Geology 224: 103–122.

    Article  CAS  Google Scholar 

  • Welsh, D.T. 2003. It's a dirty job but someone has to do it: the role of marine benthic macrofauna in organic matter turnover and nutrient recycling to the water column. Chemistry & Ecology 19: 321–342.

    Article  CAS  Google Scholar 

  • Woulds, C., G.L. Cowie, L.A. Levin, J.H. Andersson, J.J. Middelburg, S. Vandewiele, P.A. Lamont, K.E. Larkin, A.J. Gooday, S. Schumacher, C. Whitcraft, R.M. Jeffreys, and M. Schwartz. 2007. Oxygen as a control on sea floor biological communities and their roles in sedimentary carbon cycling. Limnology and Oceanography 52: 1698–1709.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by Walter and Andrée de Nottbeck Foundation, Svenska studiefonden; the BONUS+ project HYPER (AN); the BONUS COCOA project, which was supported by BONUS (Art 185), funded jointly by the EU and the Academy of Finland (AN); the Sabbatical leave program of the University of Waikato (CAP); and the University of Helsinki (3-year grant to JN). We thank the reviewers for the valuable comments on earlier versions of the manuscript. Judi Hewitt provided valuable advice on statistical analyses and Torsten Sjölund and Veijo Kinnunen helped with the field sampling, which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Gammal.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Judy Grassle

Electronic supplementary material

ESM 1

(PDF 423 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gammal, J., Norkko, J., Pilditch, C.A. et al. Coastal Hypoxia and the Importance of Benthic Macrofauna Communities for Ecosystem Functioning. Estuaries and Coasts 40, 457–468 (2017). https://doi.org/10.1007/s12237-016-0152-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-016-0152-7

Keywords

Navigation