Skip to main content
Log in

Soil myxobacteria as a potential source of polyketide-peptide substances

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Myxobacteria, a group of antimicrobial producing bacteria, have been successfully cultured and characterized from ten soil samples collected from different parts of Slovakia. A total of 79 myxobacteria belonging to four genera (Myxococcus, Corallococcus, Sorangium, and Polyangium) were isolated based on aspects of their life cycle. Twenty-five of them were purified, fermented, and screened for antimicrobial activities against 11 test microorganisms. Results indicated that crude extracts showed more significant activities against Gram-positive than against Gram-negative bacteria or fungi. Based on a higher degree and broader range of antimicrobial production, the two most potential extracts (K9-5, V3-1) were selected for HPLC fractionation against Micrococcus luteus and Staphylococcus aureus and LC/MS analysis of potential antibiotic metabolites. The analysis resulted in the identification of polyketide-peptide antibiotics, namely corallopyronin A and B (K9-5) and myxalamid B and C (V3-1), which were responsible for important Gram-positive activity in the observed strains. A sequence similarity search through BLAST revealed that these strains showed the highest sequence similarity to Corallococcus coralloides (K9-5, NCBI accession number KX256198) and Myxococcus xanthus (V3-1, NCBI accession number KX256197). Although screening of myxobacteria is laborious, due to difficulties in isolating cultures, this research represented the first report covering the isolation and cultivation of this challenging bacterial group from Slovakian soils as well as the screening of their antimicrobial activity, cultural identification, and secondary metabolite identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahn J, Li XM, Zee O (2007) Soraphinol B, a new acyloin compound produced by Sorangium cellulosum. Bull Kor Chem Soc 28:1215–1216. doi:10.1002/chin.200749208

    Article  CAS  Google Scholar 

  • Belogurov GA, Vassylyeva MN, Sevostyanova A, Appleman JR, Xiang AX, Lira R, Webber SE, Klyuyev S, Nudler E, Artsimovitch I, Vassylyev DG (2009) Transcription inactivation through local refolding of the RNA polymerase structure. Nature 457:332–335. doi:10.1038/nature07510

    Article  CAS  PubMed  Google Scholar 

  • Berleman JE, Kirby JR (2009) Deciphering the hunting strategy of a bacterial wolfpack. FEMS Microbiol Rev 33:942–957. doi:10.1111/j.1574-6976.2009.00185.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bode HB, Müller R (2006) Analysis of myxobacterial secondary metabolism goes molecular. J Ind Microbiol 33:577–588. doi:10.1007/s10295-006-0082-7

    Article  CAS  Google Scholar 

  • Cane DE (1997) Polyketide and nonribosomal polypeptide biosynthesis. Chem Rev 97:2463–2706. doi:10.1021/cr970097g

    Article  CAS  PubMed  Google Scholar 

  • Cazin J, Wiemer DF, Howard JJ (1989) Isolation, growth characteristics, and long-term storage of fungi cultivated by attine ants. App Environ Microbiol 55:1346–1350

    CAS  Google Scholar 

  • Dawid W (2000) Biology and global distribution of myxobacteria in soils. FEMS Microbiol Rev 24:403–427. doi:10.1111/j.1574-6976.2000.tb00548.x

    Article  CAS  PubMed  Google Scholar 

  • Erol O, Schaberle TF, Schmitz A, Konig GM (2010) Biosynthesis of the myxobacterial antibiotic corallopyronin A. Chembiochem 11:1253–1265. doi:10.1002/cbic.201000085

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. doi:10.1007/bf01734359

    Article  CAS  PubMed  Google Scholar 

  • Gaspari F, Paitan Y, Mainini M, Losi D, Ron EZ, Marinelli F (2005) Myxobacteria isolated in Israel as potential source of new anti-infectives. J Appl Microbiol 98:429–439. doi:10.1111/j.1365-2672.2004.02477.x

    Article  CAS  PubMed  Google Scholar 

  • Gebreyohannes G, Moges F, Sahile S, Raja N (2013) Isolation and characterization of potential antibiotic producing actinomycetes from water and sediments of lake Tana, Ethiopia. Asian Pac J Trop Biomed 3:426–435. doi:10.1016/s2221-1691(13)60092-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerth K, Jansen R, Reifenstahl G, Thierbach G (1983) The myxalamids, new antibiotics from Myxococcus xanthus (Myxobacterales). I. Production, physico-chemical and biological properties, and mechanism of action. J Antibiot 36:1150–1156. doi:10.7164/antibiotics.36.1150

    Article  CAS  PubMed  Google Scholar 

  • Gerth K, Trowitzsch W, Piehl G, Schultze R, Lehmann J (1984) Inexpensive media for mass cultivation of myxobacteria. Appl Microbiol Biotechnol 19:23–28. doi:10.1007/bf00252812

    Article  CAS  Google Scholar 

  • Gerth K, Pradella S, Perlova O, Beyer S, Müller R (2003) Myxobacteria: proficient producers of novel natural products with various biological activities—past and future biotechnological aspects with the focus on the genus Sorangium. J Biotechnol 106:233–253. doi:10.1016/j.jbiotec.2003.07.015

    Article  CAS  PubMed  Google Scholar 

  • Irschik H, Jansen R, Hofle G, Gerth K, Reichenbach H (1985) The corallopyronins, new inhibitors of bacterial RNA synthesis from myxobacteria. I Antibiot 38:145–152. doi:10.7164/antibiotics.38.145

    Article  CAS  Google Scholar 

  • Jansen R, Irschik H, Reichenbach H, Höfle G (1985) Corallopyronin A, B, and C: three novel antibiotics from Corallocuccus coralloides Cc c127 (Myxobacterales). Liebigs Ann Chem 4:822–836. doi:10.1002/chin.198533371

    Article  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow (eds) Nucleic acid techniques in bacterial systematics. Wiley, UK, pp 115–176

    Google Scholar 

  • Lang E, Stackebrandt E (2009) Emended descriptions of the genera Myxococcus and Corallococcus, typification of the species Myxococcus stipitatus and Myxococcus macrosporus and a proposal that they be represented by neotype strains. Request for an opinion. Int J Syst Evol Microbiol 59:2122–2128. doi:10.1099/ijs.0.003566-0

    Article  PubMed  Google Scholar 

  • McBride MJ, Zusman DR (1996) Behavioral analysis of single cells of Myxococcus xanthus in response to prey cells of Escherichia coli. FEMS Microbiol Lett 137:227–231. doi:10.1111/j.1574-6968.1996.tb08110.x

    Article  CAS  PubMed  Google Scholar 

  • Mohr KI, Stechling M, Wink J, Wilharm E, Stadler M (2015) Comparison of myxobacterial diversity and evaluation of isolation success in two niches: Kiritimati Island and German compost. Microbiol open 5:268–278. doi:10.1002/mbo3.325

    Article  Google Scholar 

  • Mukhopadhyay J, Das K, Ismail S, Koppstein D, Jang M, Hudson B, Sarafianos S, Tuske S, Patel J, Jansen R, Irschik H, Arnold E, Ebright RH (2008) The RNA polymerase “switch region” is a target for inhibitors. Cell 135:295–307. doi:10.3410/f.1157302.617440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neill A, Oliva B, Storey C, Hoyle A, Fishwick C, Chopra I (2000) RNA polymerase inhibitors with activity against rifampicin-resistant mutants of Staphylococcus aureus. Antimicrob Ag Chemother 44:3163–3166. doi:10.1128/aac.44.11.3163-3166.2000

    Article  Google Scholar 

  • Reichenbach H (1986) The myxobateria: common organisms with uncommon behaviour. Microbiol Sc 3:268–274

    CAS  Google Scholar 

  • Reichenbach H (1993) Biology of the myxobacteria: ecology and taxonomy. In: Dworkin M, Kaiser D (eds) Myxobacteria II. ASM Press, Washington DC, pp 13–62

    Google Scholar 

  • Reichenbach H (2001) Myxobacteria producers of novel bioactive substances. J Ind Microbiol Biotechnol 27:1057–1098. doi:10.1038/sj.jim.7000025

    Article  Google Scholar 

  • Reichenbach H (2005) Genus II. Corallococcus gen. Nov. (Chondrococcus Jahn 1924, 85). In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey's manual of systematic bacteriology. Springer, New York, pp 1079–1082

    Chapter  Google Scholar 

  • Reichenbach H, Dworkin M (1992) The myxobacteria. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, New York, pp 3417–3487

    Google Scholar 

  • Shimkets L, Dworkin M, Reichenbach H (2006) The myxobacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackenbrandt E (eds) The prokaryotes. Springer, New York, pp 31–115

    Chapter  Google Scholar 

  • Schäberle TF, Mohseni MM, Lohr F, Schmitz A, König GM (2014) Function of the loading module in CorI and of the O-methyltransferase CorH in vinyl carbamate biosynthesis of the antibiotic corallopyronin A. Antimicrob Agents Chemother 58:950–956. doi:10.1128/aac.01894-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Silakowski B, Nordsiek G, Kunze B, Blöcker H, Müller R (2001) Novel features in a combined polyketide synthase/non-ribosomall peptide synthetase: the myxalamid biosynthetic gene cluster of the myxobacterium Stigmatella aurantiaca Sga 15. Chem Biol 8:59–69. doi:10.1016/s1074-5521(00)00056-9

    Article  CAS  PubMed  Google Scholar 

  • Silakowski B, Schairer HU, Ehret H, Kunze B, Weinig S, Nordsiek G, Brandt P, Blöcker H, Höfle G, Beyer S, Müller R (1999) New lessons for combinatorial biosynthesis from myxobacteria: the myxothiazol biosynthetic gene cluster of Stigmatella aurantiaca DW4/3-1. J Biol Chem 274:37391–37399. doi:10.1074/jbc.274.52.37391

    Article  CAS  PubMed  Google Scholar 

  • Spröer C, Reichenbach H, Stackebrandt E (1999) The correlation between morphogenetic classification of myxobacteria. Int J Syst Bacteriol 4:1255–1262. doi:10.1099/00207713-49-3-1255

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weissman KJ, Muller R (2010) Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat Prod Rep 27:1276–1295. doi:10.1002/chin.201051263

    Article  CAS  PubMed  Google Scholar 

  • Wenzel SC, Muller R (2009) Myxobacteria-microbial factories for the production of bioactive secondary metabolites. Mol BioSyst 5:567–574. doi:10.1039/b901287g

  • Wiegand I, Hilpert K, Hancock RE (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175. doi:10.1038/nprot.2007.521

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Yao Q, Cai Z, Xie X, Zhu H (2003) Isolation and identification of myxobacteria from saline-alkaline soils in Xinjiang, China. PLoS One 8:e70466. doi:10.1371/journal.pone.0070466

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to the Helmholtz Centre for Infection Research (Microbial Strain Collection Group), Braunschweig, Germany, for the scholarship and supporting of the results. This study was also supported by the Europien Community under project no. 26220220180: Building Research Centre Agrobiotech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Charousová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charousová, I., Steinmetz, H., Medo, J. et al. Soil myxobacteria as a potential source of polyketide-peptide substances. Folia Microbiol 62, 305–315 (2017). https://doi.org/10.1007/s12223-017-0502-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-017-0502-2

Keywords

Navigation