Skip to main content

Advertisement

Log in

Production of an exopolysaccharide by Antarctic yeast

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Psychrophilic Antarctic yeasts produce polysaccharides in different concentrations. According to morphological, cultural, physiological and biochemical characteristics, the best producer strain was identified as Cryptococcus flavus A51. The highest values for viscosity (59.1 mPa s) and crude polysaccharide productivity (5.75 g/L) were obtained in a medium containing 5 % sucrose and 0.25 % (NH4)2SO4, at 24 °C for 6 d. The chemical composition and sugar constituents of the crude exopolysaccharide were determined (92.5 % saccharides, 3.34 % protein, and 4.16 % ash). The monosaccharide composition of the exopolysaccharide obtained from C. flavus strain AL51 was established (55.1 % mannose, 26.1 % glucose, 9.60 % xylose, 1.90 % galactose). The microbial biopolymer has a high molar mass and homogeneity: 82 % of it had M 1.01 MDa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DBB:

diazonium blue B (a test)

HPSEC:

high-performance size-exclusion chromatography

EPS:

exopolysaccharide(s)

References

  • Adami A., Cavazzoni V.: Exopolysaccharides produced by some yeast strains. Annal.Microbiol.Enzimol. 40, 245–253 (1990).

    CAS  Google Scholar 

  • Barnett J.A., Payne R.W., Yarrow D.: Yeasts:Characteristics and Identification. Cambridge University Press 1990.

  • Blakeney A., Harris P., Henry R., Stony B.: A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr. Res. 113, 291–299 (1983).

    Article  CAS  Google Scholar 

  • Chiura H., Iizuka M., Yamamoto T.: A glucomannan as an extracellular product of Candida utilis. I. Production and characterization of a glucomannan. Agric.Biol.Chem. 46, 1723–1733 (1982a).

    CAS  Google Scholar 

  • Chiura H., Iizuka M., Yamamoto T.: A glucomannan as an extracellular product of Candida utilis. II. Structure of a glucomannan characterization of oligosaccarides obtained by partial hydrolysis. Agric.Biol.Chem. 46, 1733–1742 (1982b).

    CAS  Google Scholar 

  • D’Amico S., Collins T., Marx J.C., Feller G., Gerday C.: Psychrophilic microorganisms: challenges for life. EMBO Rep. 4, 385–389 (2006).

    Article  Google Scholar 

  • Dubois M., Gilles K., Hamilton Y., Rebers P., Smith F.: Colorimetric method for determination of sugars and related substances. Anal.Chem. 28, 350–356 (1956).

    Article  CAS  Google Scholar 

  • Elinov N.P., Ananieva E.P., Vitovskaya G.A.: Features of the biosynthesis and characteristics of the exoglucanns in yeasts of the genus Sporobolomyces. Mikrobiologiya 60, 466–470 (1992).

    Google Scholar 

  • Friedman E.I.: Antarctic Microbiology. Wiley-Liss, New York 1993.

    Google Scholar 

  • Kuncheva M., Pavlova K., Panchev I., Dobreva S.: Emulsifying power of mannan and glucomannan produced by yeasts. Internat. J.Cosmetic Sci. 29, 377–384 (2007).

    Article  CAS  Google Scholar 

  • Kurzman C.P., Fell J.W.: The Yeasts: a Taxonomic Study, 4th ed. Elsevier Sci. Publ., Amsterdam (Netherlands) 1998.

    Google Scholar 

  • Lacroix C., Leduy A., Noel G., Choplin L.: Effect of pH on the batch fermentation of pullulan from sucrose medium. Biotechnol. Bioeng. 27, 202–207 (1995).

    Article  Google Scholar 

  • Lambo A., Patel T.: Cometabolic degradation of polychlorinated biphenyls at low temperature by psychrotolerant bacterium Hydrogenophaga sp. IA3-A. Curr.Microbiol. 1, 48–52 (2006).

    Article  Google Scholar 

  • Margaritis A., Pase G.W.: Microbial Polysaccharides. Comprehensive Biotechnology, Vol. 3, pp. 1005–1041. Pergamon Press, Oxford 1985.

    Google Scholar 

  • Margesin R., Fauster V., Fonteyne P.A.: Characterization of cold-active pectate lyases from psychrophilic Mrakia frigida. Lett. Appl.Microbiol. 6, 453–459 (2005).

    Article  Google Scholar 

  • Nakagawa T., Nagaoka T., Taniguchi S., Miyaji T., Tomizuka N.: Isolation and characterization psychrophilic yeasts producing cold adapted pectinolytic enzymes. Lett.Appl.Microbiol. 38, 383–387 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Pavlova K., Grigorova D.: Production and properties of exopolysaccharides by Rhodotorula acheniorum MC. Food Res.Internat. 32, 473–477 (1999).

    Article  CAS  Google Scholar 

  • Pavlova K., Grigorova D., Gushterova A.: Preliminary investigations about the isolation of yeasts from Livingston Island, Antarctica. Bulg.Res.Antarctica Live Sci. 2, 110–114 (1999).

    Google Scholar 

  • Pavlova K., Koleva L., Kratchanova M., Panchev I.: Production and characterization of an exopolysaccharide by yeast. World J.Microbiol.Biotechnol. 20, 435–439 (2004).

    Article  CAS  Google Scholar 

  • Pavlova K., Gargova S., Hristozova T., Tankova Z.: Phytase from Antarctic yeast strain Cryptococcus laurentii AL27. Folia Microbiol. 53, 29–34 (2008).

    Article  CAS  Google Scholar 

  • Peterson G.R., Nelson G.A., Cathey C.A., Fuller G.G.: Rheologically interesting polysaccharides from yeasts. Appl.Biochem.Biotechnol. 20–21, 845–867 (1989).

    Article  Google Scholar 

  • Ruberto L., Vazquez S., Lobalbo A., Maccormack W.P.: Psychrotolerant hydrocarbon-degrading Rhodococcus strains isolated from polluted Antarctic soils. Antarctic Sci. 1, 47–56 (2005).

    Article  Google Scholar 

  • Sabri A., Bare G., Jacques P.: Influence of moderate temperatures on myristoyl-CoA metabolism and acyl-CoA thioesterase activity in the psychrophilic Antarctic yeast Rhodotorula aurantiaca. J.Biol.Chem. 16, 12691–12696 (2001).

    Article  Google Scholar 

  • Sandford P.A., Cotterell L.W., Pettitt D.J.: Microbial polysaccharides: new products and their commercial applications. Pure Appl.Chem. 56, 879–895 (1984).

    Article  CAS  Google Scholar 

  • Scorzetti G., Petrescu L., Yarrow D., Fell J.W.: Cryptococcus adeliensis sp.nov., a xylanase producing basidiomycetous yeast from Antarctica. Antonie van Leeuwenhoek 2, 153–157 (2000).

    Article  Google Scholar 

  • Vandamme E., Bruggeman G., Baets S., Vanhooven P.: Useful polymers of microbial origin. Agr.Food Industry Hitech. 7, 21–25 (1996).

    CAS  Google Scholar 

  • Vincent W.F.: Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarctic Sci. 3, 374–385 (2000).

    Google Scholar 

  • Vorotynskaya S.L., Vitovskaya G.A., Ananyeva E.P.: Studies on the properties of polysaccharides produced by the yeasts Cryptococcus luteolus (SAITO) skinner. Mikrobiol.Fitopatol. 26, 367–371 (1992).

    CAS  Google Scholar 

  • Welander U.: Microbial degradation of organic pollutants in soil in a cold climate. Soil Sediment Contam. 3, 281–291 (2005).

    Article  Google Scholar 

  • Willims P., Hickey M., Mitchell D.: Fluid gels based on natural polysaccharides for cosmetic applications. Cosmet.Toiletr.Magaz. 118, 51–59 (2003).

    Google Scholar 

  • Wynn-Williams D.D.: Antarctic microbial diversity: basis of polar ecosystems process. Biodivers.Conserv. 5, 1271–1294 (1996).

    Article  Google Scholar 

  • Zlatanov M., Pavlova K., Grigorova D.: Lipid composition of some yeast strains from Livingston Island, Antarctica. Folia Microbiol. 46, 402–406 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Pavlova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlova, K., Panchev, I., Krachanova, M. et al. Production of an exopolysaccharide by Antarctic yeast. Folia Microbiol 54, 343–348 (2009). https://doi.org/10.1007/s12223-009-0049-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-009-0049-y

Keywords

Navigation