Skip to main content
Log in

Energy of Surface States for 3D Magnetic Schrödinger Operators

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We establish a semi-classical formula for the sum of eigenvalues of a magnetic Schrödinger operator in a three-dimensional domain with compact smooth boundary and Neumann boundary conditions. The eigenvalues we consider have eigenfunctions localized near the boundary of the domain, hence they correspond to surface states. Using relevant coordinates that straighten out the boundary, the leading order term of the energy is described in terms of the eigenvalues of model operators in the half-axis and the half-plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avron, J., Herbst, I., Simon, B.: Schrödinger operators with magnetic fields. I. General interactions. Duke Math. J. 45(4), 847–883 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bolley, C., Helffer, B.: An application of semi-classical analysis to the asymptotic study of the supercooling field of a superconducting material. Ann. Inst. H. Poincaré Phys. Théor. 58(2), 198–233 (1993)

    MathSciNet  MATH  Google Scholar 

  3. Bonnaillie, V.: Analyse mathémathique de la supraconductivité dans un domaine à coins : méthodes semi-classiques et numérique. Thèse de doctorat, Université Paris 11 (2003)

  4. Bonnaillie, V.: On the fundamental state energy for Schrödinger operator with magnetic field in domains with corners. Asymptot. Anal. 41(3–4), 215–158 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Bonnaillie-Noël, V., Dauge, M., Popoff, N., Raymond, N.: Discrete spectrum of a model Schrödinger operator on the half-plane with Neumann condition. Z. Angew. Math. Phys. 63(2), 203–231 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Colin de Verdière, Y.: L’asymptotique de Weyl pour les bouteilles magnétiques. Commun. Math. Phys. 105, 327–335 (1986)

    Article  MATH  Google Scholar 

  7. Dauge, M., Helffer, B.: Eigenvalues variation I. Neumann problem for Sturm–Liouville operators. J. Differ. Equ. 104(2), 243–262 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Erdös, L., Solovej, J.P.: Semiclassical eigenvalue estimates for the Pauli operator with strong non-homogeneous magnetic fields. II. Leading order asymptotic estimates. Commun. Math. Phys. 188, 599–656 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Evans, W.D., Lewis, R.T., Siedentop, H., Solovej, J.P.: Counting eigenvalues using coherent states with an application to Dirac and Schrödinger operators in the semi-classical limit. Ark. Mat. 34(2), 265–285 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fock, V.: Bemerkung zur Quantelung des harmonischen oszillators im magnetfeld. Z. Phys. A 47(5–6), 446–448 (1928)

    Article  MATH  Google Scholar 

  11. Fournais, S.: Spectral confinement and current for atoms in strong magnetic fields. Adv. Math. 212(2), 407–457 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fournais, S., Helffer, B.: Spectral Methods in Surface Superconductivity. Progress in Nonlinear Differential Equations and Their Applications, vol. 77. Birkhäuser Boston Inc., Boston (2010)

    MATH  Google Scholar 

  13. Fournais, S., Kachmar, A.: On the energy of bound states for a magnetic Schrödinger operator. J. Lond. Math. Soc. 80(1), 233–255 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fournais, S., Kachmar, A.: The ground state energy of the three dimensional Ginzburg–Landau functional. Part I: bulk regime. Commun. Partial Differ. Equ. 38(2), 339–383 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fournais, S., Kachmar, A., Persson, M.: The ground state energy of the three dimensional Ginzburg–Landau functional. Part II: surface regime. J. Math. Pures Appl. 99(3), 343–374 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Frank, R.: On the asymptotic number of edge states for magnetic Schrödinger operators. Proc. Lond. Math. Soc. 95(1), 1–19 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Frank, R., Ekholm, T.: On Lieb–Thirring inequalities for Schrödinger operators with virtual level. Commun. Math. Phys. 264(3), 725–740 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Frank, R., Geisinger, L.: Refined semi-classical asymptotics for fractional powers of the Laplace operator. Bull. Math. Sci. 2(2), 281–319 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Helffer, B.: Introduction to the Semiclassical Analysis for the Schrödinger Operator and Applications. Springer Lecture Notes in Mathematics, vol. 1336. Springer, Berlin (1988)

    Google Scholar 

  20. Helffer, B., Mohamed, A.: Semi-classical analysis for the ground state energy of a Schrödinger operator with magnetic wells. J. Funct. Anal. 138(1), 40–81 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Helffer, B., Morame, A.: Magnetic bottles for the Neumann problem: curvature effects in the case of dimension 3 (general case). Ann. Sci. Ecole Norm. Super. 37(1), 105–170 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Helffer, B., Morame, A.: Magnetic bottles in connection with superconductivity. J. Func. Anal. 181(2), 604–680 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Helffer, B., Morame, A.: Magnetic bottles for the Neumann problem: the case of dimension 3. Spectral and inverse spectral theory (Goa, 2000). Proc. Indian Acad. Sci. Math. Sci. 112(1), 71–84 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kachmar, A.: Problèmes aux limites issues de la supraconductivité, Ph.D. thesis. University Paris-Sud/ Orsay (2007)

  25. Kachmar, A.: Weyl asymptotics for magnetic Schrödinger operator and de Gennes’ boundary condition. Rev. Math. Phys. 20(8), 901–932 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kachmar, A., Khochman, A.: Spectral asymptotics for magnetic Schrödinger operators in domains with corners. J. Spectr. Theory 3(4), 553–574 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lieb, E.H., Solovej, J.P., Yngvason, J.: Asymptotics of heavy atoms in high magnetic fields. II. Semiclassical regions. Commun. Math. Phys. 161(1), 77–124 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lu, K., Pan, X.-B.: Estimates of the upper critical field for the Ginzburg Landau equations of superconductivity. Phys. D 127, 73–104 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Morame, A., Truc, F.: Remarks on the spectrum of the Neumann problem with magnetic field in the half space. J. Math. Phys. 46(1), 1–13 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Persson, A.: Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator. Math. Scand. 8, 143–153 (1960)

    MathSciNet  MATH  Google Scholar 

  31. Popoff, N.: Sur le spectre de l’opérateur de Schrödinger magnétique dans un domaine diédral, vol. 1. Thèse de doctorat. Université de Rennes (2012)

  32. Raymond, N.: On the semiclassical 3D Neumann problem with variable magnetic field. Asymptot. Anal. 68, 1–40 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. I–IV. Academic press, New York (1978)

    MATH  Google Scholar 

  34. Sigal, I.: Geometrical methods in the quantum many body problem. Nonexistence of very negative ions. Commun. Math. Phys. 85, 309–324 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  35. Simon, B.: Functional Integration and Quantum Physics, 2nd edn. AMS, Chelsea Publishing, Providence (2005)

    MATH  Google Scholar 

  36. Sobolev, A.: On the Lieb–Thirring estimates for the Pauli operator. Duke J. Math. 82(3), 607–635 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Stenger, W., Weinstein, A.: Methods of Intermediate Problems for Eigenvalues: Theory and Ramifications. Mathematics in Science and Engineering, vol. 89. Academic Press, New York (1972)

    MATH  Google Scholar 

Download references

Acknowledgments

This paper is a major part of the author’s Ph.D. dissertation. The author wishes to thank her advisors S. Fournais and A. Kachmar. Financial support was through the Lebanese University and CNRS as well as through a Grant of the S. Fournais from Lundbeck foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwa Nasrallah.

Appendices

Appendix 1: Proof of Lemma 7.2

Using (7.16), (7.8) and (7.9), we obtain that for some constant \(c_{1}>0\)

(9.1)

Similarly, using (7.9) and (7.17), we have for some constant \(c_{2}>0\)

$$\begin{aligned}&(1-c_{2}(\ell +T))\int _{Q_{0,\ell ,T}}\!\!\!\!|g(y_{0})|^{1/2}|\widetilde{u}|^{2}dy \le \left\| u\right\| _{L^{2}({\mathcal {V}}_{x_{0}})}^{2}\nonumber \\&\quad \le (1+c_{2}(\ell +T))\int _{Q_{0,\ell ,T}}\!\!\!\!|g(y_{0})|^{1/2}|\widetilde{u}|^{2}dy. \end{aligned}$$
(9.2)

By the Cauchy–Schwarz inequality, we get using (7.11) that there exists a constant \(c_{3}>0\) such that

(9.3)

for any \(\varepsilon >0\). Next, we perform the change of variables \(z=(z_{1},z_{2},z_{3})= \Big ({{\lambda ^{1/2}_{1}}}y_{1},{{\lambda ^{1/2}_{2}}}y_{2},y_{3}\Big )\). We thus infer using (7.19) the following quadratic form in the \((z_{1},z_{2},z_{3})\) variables

(9.4)

where \(\mathbf{F}=(\mathbf{F}_{1}, \mathbf{F}_{2},\mathbf{F}_{3})\) is the magnetic potential given by

$$\begin{aligned} \mathbf{F}_{1}(z)=\lambda _{1}^{-1/2}\breve{ \mathbf{A}}^\mathrm{lin}_{1}(z),\quad \mathbf{F}_{2}(z)=\lambda _{2}^{-1/2}\breve{ \mathbf{A}}^\mathrm{lin}_{2}(z)\quad \mathbf{F}_{3}(z)=\breve{\mathbf{A}}^\mathrm{lin}_{3}(z). \end{aligned}$$

Also, we have

$$\begin{aligned} \displaystyle {\int _{Q_{0,\ell ,T}}^{}} |\widetilde{u}|^{2}\,|g(y_{0})|^{1/2}dy= \displaystyle {\int _{\widetilde{Q}_{0,\ell ,T}}^{}} |\breve{{u}}|^{2}\,dz \end{aligned}$$
(9.5)

Substituting this into (9.3) yields

$$\begin{aligned} (1-c_{2}(\ell +T)) \displaystyle {\int _{\widetilde{Q}_{0,\ell ,T}}^{}} |\breve{{u}}|^{2}\,dz \le \left\| u\right\| _{L^{2}({\mathcal {V}}_{x_{0}})}^{2} \le (1+c_{2}(\ell +T)) \displaystyle {\int _{\widetilde{Q}_{0,\ell ,T}}^{}} |\breve{{u}}|^{2}\,dz. \end{aligned}$$
(9.6)

Let \(\beta =(\beta _{1},\beta _{2},\beta _{3})=\mathrm{curl}_{z}(\mathbf{F}(z)) \) and note that the coefficients of \(\beta \) and \(\alpha \) (see (7.14)) are related by

$$\begin{aligned} \beta _{1}= {\lambda ^{-1/2}_{2}}\alpha _{1},\quad \beta _{2}= {\lambda ^{-1/2}_{1}}\alpha _{2},\quad \beta _{3}=( \lambda _{1}\lambda _{2})^{-1/2}\alpha _{3}. \end{aligned}$$

The relation (7.13) gives that

$$\begin{aligned} |\beta |=|\mathrm{curl}_{z}(\mathbf{F}(z)) |=(\beta _{1}^{2}+\beta _{2}^{2}+\beta _{3}^{2})^{1/2} = |\widetilde{\mathbf{B}}|(y_{0}) \end{aligned}$$
(9.7)

We thus perform a gauge transformation so that there exists a function \(\phi _{0}\in C^{\infty }(\widetilde{Q}_{0,\ell ,T})\) such that

$$\begin{aligned} \mathbf{F}(z)=b_{0}\mathbf{F}_{\theta _{0}}(z)+\nabla \phi _{0},\quad b_{0}=|\widetilde{\mathbf{B}}(y_{0})|, \end{aligned}$$
(9.8)

where, for \(\theta \in [0,\pi /2], \mathbf{F}_{\theta }\) is the magnetic field from (3.4) and

$$\begin{aligned} {\theta _{0}}:=\widetilde{\theta }(y_{0})=\arcsin \left( \dfrac{|\beta _{3}|}{|\beta |}\right) . \end{aligned}$$
(9.9)

We emphasize here that (9.9) is compatible with the definition of \(\theta (x)\) given in (1.10), i.e., \(\widetilde{\theta }(y_{0})=\theta (\Phi _{x_{0}}^{-1}(y_{0}))\). Combining (9.3), (9.4) and (9.8), we obtain, using (9.5),

(9.10)

for any \(\varepsilon >0\). Choose \(\varepsilon \ge \ell +T\). Inserting (9.10) into (9.1), we obtain that for some constant \(c_{4}>0\)

$$\begin{aligned}&(1-c_{4}\varepsilon ) \displaystyle {\int _{\widetilde{Q}_{0,\ell ,T}}^{}}|(-ih\nabla _{z}+b_{0}\mathbf{F}_{\theta _{0}})e^{i\phi _{0}/h}\,\breve{{u}}|^{2}\,dz - c_{4}(\ell ^{2}+T^{2})^{2} \varepsilon ^{-1}\displaystyle {\int _{\widetilde{Q}_{0,\ell ,T}}^{}}|\breve{{u}}|^{2}dz \nonumber \\&\quad \le {\mathcal {Q}}_{h}(u) \le (1+c_{4}\varepsilon )\displaystyle {\int _{\widetilde{Q}_{0,\ell ,T}}^{}}|(-ih\nabla _{z}+b_{0}\mathbf{F}_{\theta _{0}})e^{i\phi _{0}/h}\,\breve{{u}}|^{2}\,dz\nonumber \\&\qquad +\, c_{4}(\ell ^{2}+T^{2})^{2} \varepsilon ^{-1}\displaystyle {\int _{\widetilde{Q}_{0,\ell ,T}}^{}} |\breve{{u}}|^{2}\,dz. \end{aligned}$$
(9.11)

Recall (9.6) and choose \(C=\max \{c_{2},c_{4}\}\), thereby establishing (7.22) and (7.23).

Appendix 2: Proof of Lemma 8.2

According to Lemma 8.1, the lemma follows if we can prove a lower bound on the right-hand side of (8.5). We start by estimating \({\mathcal {Q}}_{h}(\psi _{1}f_{j})\). Using the IMS decomposition formula, it follows that

$$\begin{aligned} {\mathcal {Q}}_{h}(\psi _{1}f_{j})= \displaystyle {\sum _{l\in {J}}^{}}\left( {\mathcal {Q}}_{h}(\chi _{l}\psi _{1}f_{j})-h^{2}\left\| |\nabla \chi _{l}|\psi _{1}f_{j}\right\| _{L^{2}(\Omega )}^{2}\right) . \end{aligned}$$
(10.1)

Using (8.11), and implementing (8.10), we get

$$\begin{aligned}&{\mathcal {Q}}_{h}(\psi _{1}f_{j})-(\Lambda h+C_{1}h^{2}\varsigma ^{-2})\left\| \psi _{1}f_{j}\right\| _{L^{2}(\Omega )}^{2} \nonumber \\&\quad \ge \displaystyle {\sum _{l\in J}^{}}\left( {\mathcal {Q}}_{h}(\psi _{1}\chi _{l}f_{j})-\big (\Lambda h+ (C_{1}+C_{2}) h^{2}\varsigma ^{-2}\big ) \left\| \psi _{1}\chi _{l}f_{j}\right\| _{L^{2}(\Omega )}^{2}\right) , \end{aligned}$$
(10.2)

where we used that \(\varsigma ^{-2}\gg 1\) (see (8.47) below).

Applying the IMS formula once again, we then find, using that \(a\ll 1\),

$$\begin{aligned}&{\mathcal {Q}}_{h}(\psi _{1}\chi _{l}f_{j}) = \sum _{m\in {\mathcal {I}}_{l}} \Big \{ {\mathcal {Q}}_{h} (\varphi _{m,l}\psi _{1}\chi _{l}f_{j}) -h^{2} \left\| |\nabla \varphi _{m,l}| \psi _{1}\chi _{l}f_{j}\right\| _{L^{2}(\Omega )}^{2}\Big \}\nonumber \\&\quad \ge \sum _{m\in {\mathcal {I}}_{l}} \Big \{ {\mathcal {Q}}_{h}(\varphi _{m,l}\psi _{1}\chi _{l}f_{j}) - (C_{1}+C_{2}+C_{3}^{\prime })h^{2}(a\varsigma )^{-2}\left\| \varphi _{m,l} \psi _{1}\chi _{l}f_{j}\right\| _{L^{2}(\Omega )}^{2}\Big \}\,.\nonumber \\ \end{aligned}$$
(10.3)

The last inequality follows from (8.14) and \(C^{\prime }_{3}:=C_{3}\sup _{l\in J} \Vert D\Phi _{l}\Vert ^{2}\). Inserting this into (10.2), it follows that

$$\begin{aligned}&{\mathcal {Q}}_{h}(\psi _{1}f_{j})-(\Lambda h+C_{1}h^{2}\varsigma ^{-2})\left\| \psi _{1}f_{j}\right\| _{L^{2}(\Omega )}^{2}\nonumber \\&\quad \ge \displaystyle {\sum _{l\in J}^{}}\sum _{m\in {\mathcal {I}}_{l}}\left( {\mathcal {Q}}_{h}(\varphi _{m,l} \psi _{1}\chi _{l}f_{j}) \right. \nonumber \\&\qquad \left. -\big (\Lambda h+ (C_{1}+C_{2}+C_{3}^{\prime }) h^{2}(a\varsigma )^{-2}\big ) \left\| \varphi _{m,l}\psi _{1}\chi _{l}f_{j}\right\| _{L^{2}(\Omega )}^{2}\right) \,. \end{aligned}$$
(10.4)

Applying Lemma 7.2 with \(y_{0}\) replaced by \(y_{m,l}, u=\varphi _{m,l}\psi _{1}\chi _{l}f_{j}, \ell =(1+a)\varsigma , T=\varsigma \), we then deduce that there exists a function \(\phi _{m,l}:=\phi _{y_{m,l}}\in C^{\infty }(\widetilde{Q}^{m,l}_{(1+a)\varsigma })\) such that, for all \(\varepsilon \in (0,1]\) satisfying \(\varepsilon \gg \varsigma \), one has, using \(a\ll 1\),

$$\begin{aligned}&{\mathcal {Q}}_{h}(\psi _{1}f_{j})-(\Lambda h+C_{1}h^{2}\varsigma ^{-2})\left\| \psi _{1}f_{j}\right\| _{L^{2}(\Omega )}^{2} \nonumber \\&\quad \ge (1-C\varepsilon ) \sum _{l\in J}\sum _{m\in {\mathcal {I}}_{l}} \displaystyle {\int _{\widetilde{Q}^{m,l}_{(1+a)\varsigma }}^{}}|(-ih\nabla _{z}+b_{m,l}\mathbf{F}_{\theta _{m,l}})\,e^{i\phi _{m,l}/h}\breve{\varphi } _{m,l}\breve{\psi }_{1}\breve{\chi }_{l}\breve{f}_{j}|^{2} dz \nonumber \\&\qquad -\big ((\Lambda h+ (C_{1}+C_{2}+C_{3}^{\prime })h^{2}(a\varsigma )^{-2})(1+3C\varsigma )\nonumber \\&\qquad +\, 25C\varsigma ^{4}\varepsilon ^{-1}\big ) \sum _{l\in J}\sum _{m\in {\mathcal {I}}_{l}} \displaystyle {\int _{{\widetilde{Q}^{m,l}_{(1+a)\varsigma }}}^{}} |\breve{\varphi }_{m,l}\breve{\psi }_{1}\breve{\chi }_{l}\breve{f}_{j}|^{2}\,dz , \end{aligned}$$
(10.5)

where \(C\) is the constant from Lemma 7.2. Put \(\widetilde{C}=\max \big \{C_{1}+C_{2}+C^{\prime }_{3},25 C\big \}\). Inserting (10.5) into (8.5) yields the desired estimate of the lemma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasrallah, M. Energy of Surface States for 3D Magnetic Schrödinger Operators. J Geom Anal 26, 1453–1522 (2016). https://doi.org/10.1007/s12220-015-9597-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-015-9597-3

Keywords

Navigation