Skip to main content
Log in

Compactness of Relatively Isospectral Sets of Surfaces Via Conformal Surgeries

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We introduce a notion of relative isospectrality for surfaces with boundary having possibly non-compact ends either conformally compact or asymptotic to cusps. We obtain a compactness result for such families via a conformal surgery that allows us to reduce to the case of surfaces hyperbolic near infinity recently studied by Borthwick and Perry, or to the closed case by Osgood, Phillips, and Sarnak if there are only cusps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The function ξ is closely related to the ‘scattering phase’; see [10].

  2. When acting on half-densities.

References

  1. Albin, P., Aldana, C.L., Rochon, F.: Ricci flow and the determinant of the Laplacian on non-compact surfaces. Commun. Partial Differ. Equ. 38(4), 711–749 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aldana, C.: Isoresonant conformal surfaces with cusps and boundedness of the relative determinant. Commun. Anal. Geom. 18(5), 1009–1048 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Anderson, M.T.: Remarks on the compactness of isospectral sets in low dimensions. Duke Math. J. 63(3), 699–711 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brooks, R., Glezen, P.: An L p spectral bootstrap theorem. In: Geometry of the Spectrum, Seattle, WA, 1993. Contemp. Math., vol. 173, pp. 89–97. Am. Math. Soc., Providence (1994)

    Chapter  Google Scholar 

  5. Borthwick, D., Judge, C., Perry, P.A.: Determinants of Laplacians and isopolar metrics on surfaces of infinite area. Duke Math. J. 118(1), 61–102 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Borthwick, D., Perry, P.A.: Inverse scattering results for metrics hyperbolic near infinity. J. Geom. Anal. 21(2), 305–333 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brooks, R., Perry, P., Peter Petersen, V.: Compactness and finiteness theorems for isospectral manifolds. J. Reine Angew. Math. 426, 67–89 (1992)

    MATH  MathSciNet  Google Scholar 

  8. Brooks, R., Perry, P., Yang, P.: Isospectral sets of conformally equivalent metrics. Duke Math. J. 58(1), 131–150 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bunke, U.: Relative index theory. J. Funct. Anal. 105, 63–76 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Carron, G.: Déterminant relatif et la fonction Xi. Am. J. Math. 124(2), 307–352 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cheeger, J., Gromov, M., Taylor, M.: Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differ. Geom. 17, 15–53 (1982)

    MATH  MathSciNet  Google Scholar 

  12. Chang, S.-Y.A., Qing, J.: The zeta functional determinants on manifolds with boundary. II. Extremal metrics and compactness of isospectral set. J. Funct. Anal. 147(2), 363–399 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen, R., Xu, X.: Compactness of isospectral conformal metrics and isospectral potentials on a 4-manifold. Duke Math. J. 84(1), 131–154 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chang, S.-Y.A., Yang, P.C.-P.: Isospectral conformal metrics on 3-manifolds. J. Am. Math. Soc. 3(1), 117–145 (1990)

    MATH  MathSciNet  Google Scholar 

  15. Donnelly, H.: Essential spectrum and heat kernel. J. Funct. Anal. 75, 326–381 (1987)

    Article  MathSciNet  Google Scholar 

  16. Gilkey, P.B.: Leading terms in the asymptotics of the heat equation. In: Geometry of Random Motion, Ithaca, NY, 1987. Contemp. Math., vol. 73, pp. 79–85. Am. Math. Soc., Providence (1988)

    Chapter  Google Scholar 

  17. Gordon, C., Perry, P., Schueth, D.: Isospectral and isoscattering manifolds: a survey of techniques and examples. In: Geometry, Spectral Theory, Groups, and Dynamics. Contemp. Math., vol. 387, pp. 157–179 (2004)

    Chapter  Google Scholar 

  18. Guillarmou, C.: Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds. Duke Math. J. 129(1), 1–37 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Guillopé, L., Zworski, M.: Upper bounds on the number of resonances for non-compact Riemann surfaces. J. Funct. Anal. 129(2), 364–389 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hassell, A., Zelditch, S.: Determinants of Laplacians in exterior domains. Int. Math. Res. Not. 18, 971–1004 (1999)

    Article  MathSciNet  Google Scholar 

  21. Kim, Y.-H.: Surfaces with boundary: their uniformizations, determinants of Laplacians, and isospectrality. Duke Math. J. 144(1), 73–107 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Melrose, R.B.: Isospectral sets of drumheads are compact in \(\mathcal{C}^{\infty}\) (1983). Unpublished preprint from MSRI, 048-83. Available online at http://math.mit.edu/~rbm/paper.html

  23. Melrose, R.B.: Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces. In: Spectral and Scattering Theory, Sanda, 1992. Lecture Notes in Pure and Appl. Math., vol. 161, pp. 85–130. Dekker, New York (1994)

    Google Scholar 

  24. Mazzeo, R., Melrose, R.B.: Meromorphic extension of the resolvent on complete spaces with asymptotically negative curvature. J. Funct. Anal. 75(2), 260–310 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  25. McKean, H.P., Singer, I.M.: Curvature and the eigenvalues of the Laplacian. J. Differ. Geom. 1, 43–69 (1967)

    MATH  MathSciNet  Google Scholar 

  26. Osgood, B., Phillips, R., Sarnak, P.: Compact isospectral sets of plane domains. Proc. Natl. Acad. Sci. USA 85(15), 5359–5361 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  27. Osgood, B., Phillips, R., Sarnak, P.: Compact isospectral sets of surfaces. J. Funct. Anal. 80(1), 212–234 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  28. Osgood, B., Phillips, R., Sarnak, P.: Extremals of determinants of Laplacians. J. Funct. Anal. 80(1), 148–211 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  29. Osgood, B., Phillips, R., Sarnak, P.: Moduli space, heights and isospectral sets of plane domains. Ann. Math. 129, 293–362 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  30. Zhou, G.: Compactness of isospectral compact manifolds with bounded curvatures. Pac. J. Math. 181(1), 187–200 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to David Borthwick, Gilles Carron, Andrew Hassell, Rafe Mazzeo, and Richard Melrose for helpful conversations and to the anonymous referee for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Albin.

Additional information

Communicated by Steven Zelditch.

P. Albin was partially funded by NSF grant DMS-1104533. C.L. Aldana was partially funded by FCT project ptdc/mat/101007/2008. Registered at MPG, AEI-2012-059. F. Rochon was supported by grant DP120102019.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albin, P., Aldana, C.L. & Rochon, F. Compactness of Relatively Isospectral Sets of Surfaces Via Conformal Surgeries. J Geom Anal 25, 1185–1210 (2015). https://doi.org/10.1007/s12220-013-9463-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-013-9463-0

Keywords

Mathematics Subject Classification

Navigation