Skip to main content
Log in

Compactness analysis for free boundary minimal hypersurfaces

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We investigate compactness phenomena involving free boundary minimal hypersurfaces in Riemannian manifolds of dimension less than eight. We provide natural geometric conditions that ensure strong one-sheeted graphical subsequential convergence, discuss the limit behaviour when multi-sheeted convergence happens and derive various consequences in terms of finiteness and topological control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. To avoid ambiguities, we stress that \(\partial M_0\) stands for the boundary of the manifold \(M_0\) (in the standard sense of Differential Geometry) and the closure is meant in \(\overline{B_1(0)}.\) Similar remarks apply to the statement of Theorem 28, with straightforward modifications.

  2. For the construction presented here, the reader should recall that a proper map whose target is a first-countable Hausdorff space is in fact closed.

References

  1. Aiex, N.S.: Non-compactness of the space of minimal hypersurfaces. Preprint at arXiv:1601.01049

  2. Ambrozio, L.: Rigidity of area-minimizing free boundary surfaces in mean convex three-manifolds. J. Geom. Anal. 25(2), 1001–1017 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrozio, L., Carlotto, A., Sharp, B.: Compactness of the space of minimal hypersurfaces with bounded volume and \(p\)-th Jacobi eigenvalue. J. Geom. Anal. 26(4), 2591–2601 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrozio, L., Carlotto, A., Sharp, B.: Index estimates for free boundary minimal hypersurfaces. Math. Ann. (to appear)

  5. Ambrozio, L., Nunes, I.: A gap theorem for free boundary minimal surfaces in the three-ball. Preprint at arXiv: 1608.05689

  6. Azzam, A., Kreyszig, E.: On solutions of elliptic equations satisfying mixed boundary conditions. SIAM J. Math. Anal. 13(2), 254–262 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cairns, S.: Triangulation of the manifold of class one. Bull. Am. Math. Soc. 41(8), 549–552 (1935)

    Article  MathSciNet  MATH  Google Scholar 

  8. Choi, H.I., Schoen, R.: The space of minimal embeddings of a surface into a three-dimensional manifold of positive Ricci curvature. Invent. Math. 81, 387–394 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Courant, R.: The existence of minimal surfaces of given topological structure under prescribed boundary conditions. Acta Math. 72, 51–98 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  10. Courant, R.: Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces. Appendix by M. Schiffer. Interscience Publishers Inc., New York (1950)

    MATH  Google Scholar 

  11. De Lellis, C., Ramic, J.: Min-max theory for minimal hypersurfaces with boundary. Preprint at arXiv:1611.00926

  12. Devyver, B.: Index of the critical catenoid. Preprint at arXiv: 1609.02315

  13. Folha, A., Pacard, F., Zolotareva, T.: Free boundary minimal surfaces in the unit 3-ball. Preprint at arXiv:1502.06812

  14. Fraser, A., Li, M.: Compactness of the space of embedded minimal surfaces with free boundary in three-manifolds with nonnegative Ricci curvature and convex boundary. J. Differ. Geom. 96(2), 183–200 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fraser, A., Schoen, R.: The first Steklov eigenvalue, conformal geometry, and minimal surfaces. Adv. Math. 226(5), 4011–4030 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fraser, A., Schoen, R.: Minimal surfaces and eigenvalue problems. In: Geometric Analysis, Mathematical Relativity, and Nonlinear Partial Differential Equations. Contemporary Mathematics, vol. 599, pp. 105–121. American Mathematical Society, Providence, RI (2013)

  17. Fraser, A., Schoen, R.: Sharp eigenvalue bounds and minimal surfaces in the ball. Invent. Math. 203(3), 823–890 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Freidin, B., Gulian, M., McGrath, P.: Free boundary minimal surfaces in the unit ball with low cohomogeneity. Proc. Am. Math. Soc. 145(4), 1671–1683 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001)

    MATH  Google Scholar 

  20. Grüter, M., Jost, J.: Allard type regularity results for varifolds with free boundaries. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 13(1), 129–169 (1986)

    MathSciNet  MATH  Google Scholar 

  21. Guang, Q., Li, M., Zhou, X.: Curvature estimates for stable free boundary minimal hypersurfaces. Preprint at arXiv:1611.02605

  22. Hsiang, W.Y.: Minimal cones and the spherical Bernstein problem. I. Ann. Math. 118(1), 61–73 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ketover, D.: Free boundary minimal surfaces of unbounded genus. Preprint at arXiv:1612.08691

  24. Lang, S.: Fundamentals of Differential Geometry. Graduate Texts in Mathematics, vol. 191. Springer, New York (1999)

    MATH  Google Scholar 

  25. Li, M.: A general existence theorem for embedded minimal surfaces with free boundary. Commun. Pure Appl. Math. 68(2), 286–331 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, M., Zhou, X.: Min–max theory for free boundary minimal hypersurfaces I—regularity theory. Preprint at arXiv:1611.02612

  27. Máximo, D., Nunes, I., Smith, G.: Free boundary minimal annuli in convex three-manifolds. J. Differ. Geom. 106(1), 139–186 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. McGrath, P.: A characterization of the critical catenoid. Preprint at arXiv:1603.04114v2

  29. Miranda, C.: Sul problema misto per le equazioni lineari ellittiche. Ann. Mat. Pura Appl. 39, 279–303 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schoen, R., Simon, L.: Regularity of stable minimal hypersurfaces. Commun. Pure Appl. Math. 34, 741–797 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schoen, R., Simon, L., Yau, S.T.: Curvature estimates for minimal hypersurfaces. Acta Math. 134, 275–288 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sharp, B.: Compactness of minimal hypersurfaces with bounded index. J. Differ. Geom. 106(2), 317–339 (2017)

    Article  MathSciNet  Google Scholar 

  33. Simon, L.: Lectures on geometric measure theory. In: Proceedings of the Centre for Mathematical Analysis, vol. 3. ANU (1983)

  34. Simons, J.: Minimal varieties in Riemannian manifolds. Ann. Math. 88, 62–105 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  35. Smale, S.: An infinite dimensional version of Sard’s theorem. Am. J. Math. 87, 861–866 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  36. Smith, G., Zhou, D.: The Morse index of the critical catenoid. Preprint at arXiv:1609.01485

  37. Taylor, M.: Pseudodifferential Operators. Princeton Mathematical Series, vol. 34. Princeton University Press, Princeton (1981)

    MATH  Google Scholar 

  38. Tran, H.: Index characterization for free boundary minimal surfaces. Preprint at arXiv: 1609.01651

  39. White, B.: The space of m-dimensional surfaces that are stationary for a parametric elliptic functional. Indiana Univ. Math. J. 36(3), 567–602 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  40. White, B.: Curvature estimates and compactness theorems in 3-manifolds for surfaces that are stationary for parametric elliptic functionals. Invent. Math. 88(2), 243–256 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  41. White, B.: The space of minimal submanifolds for varying Riemannian metrics. Indiana Univ. Math. J. 40(1), 161–200 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  42. White, B.: A local regularity theorem for mean curvature flow. Ann. Math. 161, 1487–1519 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. White, B.: Which ambient spaces admit isoperimetric inequalities for submanifolds? J. Differ. Geom. 83, 213–228 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. White, B.: On the bumpy metrics theorem for minimal submanifolds. Am. J. Math. (to appear)

  45. Whitehead, J.H.C.: On \(C^1\)-complexes. Ann. Math. (2) 41, 809–824 (1940)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to André Neves for his interest in this work and for his constant support, and to the anonymous referee for carefully reading the manuscript and providing detailed feedback. A. C. also would like to thank Connor Mooney for several discussions and Francesco Lin for pointing out some relevant references. L. A. was visiting the University of Chicago while this article was written, and he would like to thank the Department of Mathematics for its hospitality. He is supported by the EPSRC on a Programme Grant entitled ‘Singularities of Geometric Partial Differential Equations’ reference number EP/K00865X/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Carlotto.

Additional information

Communicated by C. DeLellis.

Appendices

Appendix A: The second variation for smooth hypersurfaces

Our goal is to derive the second variation of the area functional for arbitrary hypersurfaces with boundary in \({\mathcal {N}}^{n+1}\). For convenience, we assume \({\mathcal {N}}\) is isometrically embedded in some Euclidean space of possibly large dimension \({\mathbb {R}}^d\). Let \(\Sigma ^n \hookrightarrow {\mathcal {N}}^{n+1}\) be a smooth properly embedded hypersurface with boundary. We consider a two-parameter family of ambient variations \(\Sigma (t,s)\) of \(\Sigma =\Sigma (0,0)\) defined by

$$\begin{aligned} \Sigma (t,s)=F_{t,s}(\Sigma ) = \Psi _s \circ \Phi _t(\Sigma ) \end{aligned}$$

where \(\Phi _t\) and \(\Psi _s\) are the flows generated by compactly supported vector fields X and Z in \({\mathbb {R}}^d\), respectively. We assume both X and Z define vector fields in \({\mathfrak {X}}_\partial \) when restricted to \({\mathcal {N}}\), therefore each \(\Sigma (t,s)\) is a properly embedded hypersurface in \({\mathcal {N}}^{n+1}\).

We have

$$\begin{aligned} \left. {\frac{\partial F_{t,s}}{\partial s}}(x)\right| _{t=s=0} = Z(x), \, \left. {\frac{\partial F_{t,s}}{\partial t}}(x)\right| _{t=s=0} = X(x), \, \text {and} \, \left. {\frac{\partial }{\partial t}}{\frac{\partial }{\partial s}}F_{t,s}(x)\right| _{t=s=0} = D_X Z (x). \end{aligned}$$

Computing the second variation of volume as in [33], Chapter 2, §9, we obtain

$$\begin{aligned}&{\frac{\partial }{\partial t}}\left. {\frac{\partial }{\partial s}}\mathscr {H}^n(\Sigma (t,s))\right| _{t=s=0}\\&\quad = \int _{\Sigma }\sum _{i=1}^{n}\langle D_{\tau _i}D_{X}Z,\tau _i\rangle +\left( \sum _{i=1}^{n}\left\langle D_{\tau _i}X,\tau _i \right\rangle \right) \left( \sum _{j=1}^{n}\left\langle D_{\tau _j}Z,\tau _j \right\rangle \right) \\&\qquad + \sum _{i=1}^n \left\langle \left( D_{\tau _{i}} X\right) ^{\bot _{\Sigma }}, \left( D_{\tau _{i}} Z\right) ^{\bot _{\Sigma }}\right\rangle - \sum _{i,j=1}^n \left\langle \tau _{i}, D_{\tau _{j}} X\right\rangle \left\langle \tau _{j}, D_{\tau _{i}} Z\right\rangle \ d\mathscr {H}^n. \end{aligned}$$

In the above formula, the symbol \(\perp _{\Sigma }\) denotes the component that is normal to \(\Sigma \) in \({\mathbb {R}}^d\), D denotes the Euclidean Levi-Civita connection, and \(\{\tau _i\}_{i=1}^{n}\) is a choice of an orthonormal basis of \(T_p\Sigma \) at each point p in \(\Sigma \) (the above sums are easily shown to be independent of such choice).

Since we assumed that X and Z belong to \({\mathfrak {X}}_\partial \) when restricted to \({\mathcal {N}}\), decomposing the vectors fields XZ and \(D_{X}Z\) into their components that are tangent and perpendicular to \({\mathcal {N}}\) it is possible to use the Gauss equation for the embedding of \({\mathcal {N}}\) in \({\mathbb {R}}^d\) to rewrite the above formula solely in terms of the geometry of the embedding \(\Sigma \hookrightarrow {\mathcal {N}}\):

$$\begin{aligned} {\frac{\partial }{\partial t}}\left. {\frac{\partial }{\partial s}}\mathscr {H}^n(\Sigma (t,s))\right| _{t=s=0}= & {} \int _{\Sigma } div_{\Sigma } (\nabla _{X}Z) + div_{\Sigma } (X) div_{\Sigma }(Z) \\&+ \sum _{i=1}^{n} \left\langle (D_{e_i}X)^{\bot },(D_{e_i}Z)^{\bot }\right\rangle - \sum _{i=1}^n R_{{\mathcal {N}}}(X,\tau _i,Z,\tau _i)\\&-\sum _{i,j=1}^n \langle \tau _{i}, \nabla _{\tau _{j}} X\rangle \langle \tau _{j}, \nabla _{\tau _{i}} Z)\rangle \ d\mathscr {H}^n, \end{aligned}$$

where \(\nabla \) and \(R_{\mathcal {N}}\) are the Levi-Civita connection and Riemann tensor of \({\mathcal {N}}\) respectively, \(\bot \) denotes the component that is normal to \(\Sigma \) and tangent to \({\mathcal {N}}\), and, given any vector field Y that is tangent to \({\mathcal {N}}\), we write \(div_\Sigma (Y) = \sum _{i=1}^{n} \langle \nabla _{\tau _i}Y,\tau _i \rangle \).

In the sequel of this Appendix, the Levi-Civita connection of \(\Sigma \) will be denoted by \({\nabla }^{\Sigma }\) and \({\nabla }^\bot \) will denote the connection of the normal bundle of \(\Sigma \) in \({\mathcal {N}}\). The projections \(^\bot \), \(^\top \) are the normal and tangential projections for \(\Sigma (t,s) \hookrightarrow {\mathcal {N}}\) respectively so that

$$\begin{aligned} X=X^\top + X^\bot \, \text {and} \, Z=Z^\top + Z^\bot \end{aligned}$$

since they are both tangent to \({\mathcal {N}}\). According to that decomposition, we write

$$\begin{aligned} {\frac{\partial }{\partial t}}\left. {\frac{\partial }{\partial s}}\mathscr {H}^n(\Sigma (t,s))\right| _{t=s=0}= & {} \int _{\Sigma } div_\Sigma ({\nabla }_{X}Z) + {\mathcal {A}}(X^{\bot },Z^{\bot }) \nonumber \\&+ {\mathcal {B}}(X^{\top },Z^{\top }) + {\mathcal {C}}(X^{\top },Z^{\bot }) + {\mathcal {C}}(Z^{\top },X^{\bot }) \ d\mathscr {H}^{n}, \end{aligned}$$
(A.1)

where, using the identity \(div_{\Sigma }(Y) = div_{\Sigma } (Y^{\top }) - \langle Y^{\top }, H\rangle \) for H the mean curvature vector of \(\Sigma \hookrightarrow {\mathcal {N}}\) and any vector field Y tangent to \({\mathcal {N}}\), the terms \({\mathcal {A}}, {\mathcal {B}}\) and \({\mathcal {C}}\) are given by:

$$\begin{aligned} {\mathcal {A}}(X^{\bot },Z^{\bot }) =&\ \langle X^{\bot }, H\rangle \langle Z^{\bot },H \rangle + \sum _{i=1}^n\left\langle \nabla ^{\bot }_{\tau _i} (X^\bot ) , \nabla ^{\bot }_{\tau _i} (Z^\bot )\right\rangle \nonumber \\&- \sum _{i=1}^{n} R_{\mathcal {N}} (X^\bot ,\tau _i, Z^\bot ,\tau _i) - \sum _{i,j=1}^n \left\langle \tau _i,\nabla _{\tau _j} (X^\bot ) \right\rangle \left\langle \tau _j, \nabla _{\tau _i} (Z^\bot ) \right\rangle , \nonumber \\ {\mathcal {B}}(X^{\top },Z^{\top }) =&\ div_{\Sigma }(X^{\top })div_{\Sigma }(Z^{\top }) + \sum _{i=1}^{n} \left\langle A(X^{\top },\tau _i),A(Z^{\top },\tau _i))\right\rangle \nonumber \\&- \sum _{i=1}^{n} R_{\mathcal {N}} (X^\top ,\tau _i, Z^\top ,\tau _i) - \sum _{i,j=1}^{n} \left\langle \tau _i,\nabla _{\tau _j} (X^\top ) \right\rangle \left\langle \tau _j, \nabla _{\tau _i} (Z^\top ) \right\rangle , \nonumber \\ {\mathcal {C}}(X^{\top },Z^{\bot }) =&- \langle Z^{\bot },H \rangle div_{\Sigma }(X^\top ) + \sum _{i=1}^n \left\langle A(X^{\top },\tau _i), \nabla ^{\bot }_{\tau _i}(Z^{\bot }) \right\rangle \nonumber \\&- \sum _{i=1}^n R_{{\mathcal {N}}}(X^{\top },\tau _i,Z^{\bot },\tau _i) + \sum _{i=1}^n \left\langle A\left( \nabla ^{\Sigma }_{\tau _i} (X^{\top }), \tau _i\right) ,Z^{\bot } \right\rangle . \end{aligned}$$
(A.2)

Using the Gauss equation for \(\Sigma \hookrightarrow {\mathcal {N}}\) (valid for all UVWY tangent to \(\Sigma \)), namely

$$\begin{aligned} R_{\Sigma }(U,V,W,Y) = R_{{\mathcal {N}}}(U,V,W,Y) + \langle A(U,W),A(V,Y) \rangle - \langle A(U,Y),A(V,W) \rangle , \end{aligned}$$

we can write

$$\begin{aligned} {\mathcal {B}}(X^{\top },Z^{\top }) =&\ div_{\Sigma }(X^{\top })div_{\Sigma }(Z^{\top }) + \langle d (X^{\top })^{\flat } , d (Z^{\top })^{\flat } \rangle - \langle \nabla ^{\Sigma } (X^{\top }), \nabla ^{\Sigma } (Z^{\top }) \rangle \nonumber \\&- Ric_{\Sigma }(X^{\top },Z^{\top }) + \langle A(X^{\top },Z^{\top }),H \rangle . \end{aligned}$$
(A.3)

In the above formula, we use the standard musical notation relating vector fields to their dual one-forms, and d denotes the exterior differential. Defining the one-form \(\omega \) in \(\Sigma \) by

$$\begin{aligned} \omega (\xi ) = \langle A(Z^{\top },\xi ),X^{\bot }\rangle + \langle A(X^{\top },\xi ),Z^{\bot } \rangle - \langle Z^{\bot }, H \rangle \langle X^{\top }, \xi \rangle - \langle X^{\bot }, H \rangle \langle Z^{\top }, \xi \rangle , \end{aligned}$$
(A.4)

for all vectors \(\xi \) tangent to \(\Sigma \), a straightforward computation using the Codazzi equation (valid for all for UVW tangent to \(\Sigma \) and \(\eta \) normal to \(\Sigma \)), namely

$$\begin{aligned} \langle (\nabla _{U}A)(V,W),\eta \rangle - \langle (\nabla _{V}A)(U,W),\eta \rangle = R_{{\mathcal {N}}}(U,V,\eta ,W), \end{aligned}$$

gives

$$\begin{aligned} {\mathcal {C}}(X^{\top },Z^{\bot }) + {\mathcal {C}}(Z^{\top },X^{\bot }) = div_{\Sigma } \omega + \left\langle \nabla ^{\bot }_{X^{\top }} (Z^{\bot }), H \right\rangle + \left\langle \nabla ^{\bot }_{Z^{\top }} (X^{\bot }), H \right\rangle . \end{aligned}$$
(A.5)

Finally,

$$\begin{aligned} div_{\Sigma }(\nabla _{X}Z) =&\ div_{\Sigma }\left( (\nabla _{X}Z)^{\top }\right) - \left\langle \nabla _{X^{\bot }}(Z^{\bot }), H \right\rangle - \langle A(X^{\top },Z^{\top }), H \rangle \nonumber \\&- \left\langle \nabla _{X^{\bot }}(Z^{\top }), H \right\rangle - \left\langle \nabla ^{\bot }_{X^{\top }}(Z^{\bot }), H \right\rangle . \end{aligned}$$
(A.6)

Substituting Eqs. (A.2),(A.3), (A.5) and (A.6) into (A.1), we obtain

$$\begin{aligned}&{\frac{\partial }{\partial t}}\left. {\frac{\partial }{\partial s}}\mathscr {H}^n(\Sigma (t,s))\right| _{t=s=0} \\&\quad = \int _{\Sigma } \langle \nabla ^{\bot }(X^\bot ) , \nabla ^{\bot }(Z^\bot )\rangle - Ric_{\mathcal {N}} (X^\bot , Z^\bot ) - \langle (X^\bot ),(Z^\bot ) \rangle |A|^2 \\&\qquad + \langle X^{\bot }, H\rangle \langle Z^{\bot },H \rangle - \langle \nabla _{X^{\bot }} (Z^{\bot }), H \rangle - \langle [X^{\bot },Z^{\top }],H \rangle \\&\qquad + div_{\Sigma }(X^{\top }) div_{\Sigma }(Z^{\top }) + \langle d (X^{\top })^{\flat } , d (Z^{\top })^{\flat } \rangle - \langle \nabla ^{\Sigma } X^{\top }, \nabla ^{\Sigma } Z^{\top }\rangle \\&\qquad - Ric_{\Sigma }(X^{\top },Z^{\top }) + div_\Sigma ((\nabla _{X}Z)^{\top }) + div_{\Sigma }\omega \ d\mathscr {H}^{n}. \end{aligned}$$

The final manipulation we perform is to integrate by parts. Choosing a local orthonormal frame \(\{\tau _i\}\) geodesic at a point p in \(\Sigma \), the following computation at p (where we sum over repeated indices i and j) yields:

$$\begin{aligned} div_{\Sigma }(\nabla ^{\Sigma }_{X^{\top }}(Z^{\top }))= & {} \tau _i \left\langle \nabla ^{\Sigma }_{X^{\top }}(Z^{\top }),\tau _i \right\rangle \\= & {} \tau _i (\left\langle \nabla ^{\Sigma }_{\tau _j}(Z^{\top }),\tau _i \right\rangle \left\langle X^{\top },\tau _j \right\rangle ) \\= & {} \left\langle \nabla ^{\Sigma }_{\tau _i}\nabla ^{\Sigma }_{\tau _j}(Z^{\top }),\tau _i\right\rangle \left\langle X^{\top },\tau _j \right\rangle + \left\langle \nabla ^{\Sigma }_{\tau _j}(Z^{\top }),\tau _i \right\rangle \left\langle \nabla ^{\Sigma }_{\tau _i}(X^{\top }),\tau _j \right\rangle \\= & {} R_{\Sigma }(\tau _i,\tau _j,\tau _i,Z^{\top })\left\langle X^{\top },\tau _j\right\rangle + \left\langle \nabla ^{\Sigma }_{\tau _j} \nabla ^{\Sigma }_{\tau _i}(Z^{\top }),\tau _i\right\rangle \left\langle X^{\top },\tau _j\right\rangle \\&+ \left\langle \nabla _{\tau _j}Z^{\top },\tau _i \right\rangle \left\langle \nabla _{\tau _i}X^{\top },\tau _j \right\rangle \\= & {} Ric_{\Sigma }(X^{\top },Z^{\top }) + d(div_{\Sigma }(Z^{\top }))(X^{\top }) \\&- \left( \left\langle d (X^{\top })^{\flat } , d (Z^{\top })^{\flat } \right\rangle - \langle \nabla ^{\Sigma } X^{\top }, \nabla ^{\Sigma } Z^{\top }\rangle \right) . \end{aligned}$$

Therefore

$$\begin{aligned}&\int _{\Sigma } div_{\Sigma }(X^{\top })div_{\Sigma }(Z^{\top }) + \langle d (X^{\top })^{\flat } , d (Z^{\top })^{\flat } \rangle \\&\qquad - \langle \nabla ^{\Sigma } X^{\top }, \nabla ^{\Sigma } Z^{\top }\rangle - Ric_{\Sigma }(X^{\top },Z^{\top }) \ d\mathscr {H}^{n} \\&\quad = \int _{\Sigma } div_{\Sigma }\left( div_{\Sigma }(Z^{\top })(X^{\top })\right) - div_{\Sigma }\left( \nabla ^{\Sigma }_{X^{\top }}(Z^{\top })\right) \ d\mathscr {H}^{n} \\&\quad = \int _{\partial \Sigma } div_{\Sigma }(Z^{\top })\langle X^{\top }, \nu \rangle - \left\langle \nabla _{X^{\top }}(Z^{\top }),\nu \right\rangle \ d\mathscr {H}^{n-1}, \end{aligned}$$

where \(\nu \) denotes the unit outward conormal of \(\Sigma \). Thus,

$$\begin{aligned}&{\frac{\partial }{\partial t}}\left. {\frac{\partial }{\partial s}}\mathscr {H}^n(\Sigma (t,s))\right| _{t=s=0} \nonumber \\&\quad =\int _{\Sigma } \langle \nabla ^{\bot }(X^\bot ) , \nabla ^{\bot }(Z^\bot ) \rangle - Ric_{\mathcal {N}} (X^\bot , Z^\bot ) - |A|^2\langle X^\bot , Z^\bot \rangle \ d\mathscr {H}^n \nonumber \\&\qquad + \int _{\Sigma } \langle X^{\bot }, H\rangle \langle Z^{\bot },H \rangle - \langle \nabla _{X^{\bot }} (Z^{\bot }), H \rangle - \langle [X^{\bot },Z^{\top }],H \rangle \ d\mathscr {H}^n \nonumber \\&\qquad + \int _{\partial \Sigma } \langle {\nabla }_X Z, \nu \rangle + \omega (\nu ) + div_{\Sigma }(Z^{\top })\langle X^{\top }, \nu \rangle - \left\langle \nabla _{X^{\top }}(Z^{\top }),\nu \right\rangle \ d\mathscr {H}^{n-1}. \end{aligned}$$
(A.7)

where \(\omega \) is is the one-form defined in (A.4). Since

$$\begin{aligned} \langle \nabla _{X}Z , \nu \rangle + \omega (\nu )= & {} \left\langle \nabla _{X^{\bot }}(Z^{\bot }),\nu \right\rangle + \left\langle \nabla _{X^{\bot }}(Z^{\top }),\nu \right\rangle + \left\langle \nabla _{X^{\top }}(Z^{\bot }),\nu \right\rangle + \left\langle \nabla _{X^{\top }}(Z^{\top }),\nu \right\rangle \nonumber \\&+ \langle A(Z^{\top },\nu ),X^{\bot }\rangle + \langle A(X^{\top },\nu ),Z^{\bot }\rangle - \langle Z^{\bot }, H \rangle \langle X^{\top }, \nu \rangle \nonumber \\&- \langle X^{\bot }, H \rangle \langle Z^{\top }, \nu \rangle \nonumber \\= & {} \left\langle \nabla _{X^{\bot }}(Z^{\bot }),\nu \right\rangle + \langle [X^{\bot },Z^{\top }],\nu \rangle + \left\langle \nabla _{X^{\top }}(Z^{\top }),\nu \right\rangle \nonumber \\&- \langle Z^{\bot }, H \rangle \langle X^{\top }, \nu \rangle - \langle X^{\bot }, H \rangle \langle Z^{\top }, \nu \rangle , \end{aligned}$$
(A.8)

combining (A.7) and (A.8) we obtain:

$$\begin{aligned}&{\frac{\partial }{\partial t}}\left. {\frac{\partial }{\partial s}}\mathscr {H}^n(\Sigma (t,s))\right| _{t=s=0} \\&\quad =\int _{\Sigma } \langle \nabla ^{\bot }(X^\bot ) , \nabla ^{\bot }(Z^\bot ) \rangle - Ric_{\mathcal {N}} (X^\bot , Z^\bot ) - |A|^2\langle X^\bot , Z^\bot \rangle \ d\mathscr {H}^n \\&\qquad + \int _{\Sigma } \langle X^{\bot }, H\rangle \langle Z^{\bot },H \rangle - \langle \nabla _{X^{\bot }} (Z^{\bot }), H \rangle - \langle [X^{\bot },Z^{\top }],H \rangle \ d\mathscr {H}^n \\&\qquad + \int _{\partial \Sigma } \langle {\nabla }_{X^{\bot }} (Z^{\bot }), \nu \rangle + \langle [X^{\bot },Z^{\top }],\nu \rangle + div_{\Sigma }(Z^{\top })\langle X^{\top }, \nu \rangle \ d\mathscr {H}^{n-1} \\&\qquad - \int _{\partial \Sigma } \langle Z^{\bot }, H \rangle \langle X^{\top }, \nu \rangle + \langle X^{\bot }, H \rangle \langle Z^{\top }, \nu \rangle \ d\mathscr {H}^{n-1}. \end{aligned}$$

We remark that, in the above formula, whereas X and Z are tangent to \(\partial {\mathcal {N}}\) by assumption, \(X^{\top }, X^{\bot }, Z^{\top }\) and \(Z^{\bot }\) are tangent to \(\partial {\mathcal {N}}\) if and only if \(\nu \) is orthogonal to \(\partial {\mathcal {N}}\).

When \(\Sigma \) is a free boundary minimal hypersurface in \({\mathcal {N}}\) we recover the usual second variation formula,

$$\begin{aligned} {\frac{\partial }{\partial t}}\left. {\frac{\partial }{\partial s}}\mathscr {H}^n(\Sigma (t,s))\right| _{t=s=0} = \check{Q}_{\Sigma }(X^{\bot },Z^{\bot })=\check{Q}_{\Sigma }(Z^{\bot },X^{\bot }). \end{aligned}$$

where \(\check{Q}_{\Sigma }\) is the index form on the normal bundle of \(\Sigma \). In fact, in that situation the terms containing H are obviously zero and, since all components \(X^{\top }\), \(X^{\bot }\), \(Z^{\top }\), \(Z^{\bot }\) are orthogonal to \(\nu \) (i.e., they are tangent to \(\partial {\mathcal {N}}\)), \(\langle X^{\bot },\nu \rangle \) vanishes identically and

$$\begin{aligned} \langle [X^{\top },Z^{\bot }] ,\nu \rangle= & {} \left\langle \nabla _{X^{\top }}(Z^{\bot }),\nu \right\rangle - \left\langle \nabla _{Z^{\bot }}(X^{\top }),\nu \right\rangle \\= & {} \langle II^{\partial {\mathcal {N}}}(X^{\top },Z^{\bot }),\nu \rangle - \langle II^{\partial {\mathcal {N}}}(Z^{\bot },X^{\top }),\nu \rangle = 0. \end{aligned}$$

For the sake of the argument in Sect. 6, it is convenient to compare \(\nu \) with the unit outward pointing normal vector field to \(\partial {\mathcal {N}}\), denoted by \(\nu _{e}\). In a succinct way, we write

$$\begin{aligned}&{\frac{\partial }{\partial t}}\left. {\frac{\partial }{\partial s}}\mathscr {H}^n(\Sigma (t,s))\right| _{t=s=0} \\&\quad =\int _{\Sigma } \langle \nabla ^{\bot }(X^\bot ) , \nabla ^{\bot }(Z^\bot ) \rangle - Ric_{\mathcal {N}} (X^\bot , Z^\bot ) - |A|^2\langle X^\bot , Z^\bot \rangle \ d\mathscr {H}^n \\&\qquad + \int _{\partial \Sigma } \langle \nabla _{X^{\perp }} Z^{\perp }, \nu _e \rangle \ d\mathscr {H}^{n-1} \\&\qquad + \int _{\Sigma } \Xi _1(X,Z,H) \ d\mathscr {H}^n + \int _{\partial \Sigma } \Xi _2(X,Z,H,\nu ,\nu _e) \ d\mathscr {H}^{n-1}, \end{aligned}$$

where

$$\begin{aligned} \Xi _1(X,Z,H) = \langle X^{\bot }, H\rangle \langle Z^{\bot },H \rangle - \langle \nabla _{X^{\bot }} (Z^{\bot }), H \rangle - \langle [X^{\bot },Z^{\top }],H \rangle \end{aligned}$$

and

$$\begin{aligned} \Xi _2(X,Z,H,\nu ,\nu _e) =&\left\langle \nabla _{X^{\bot }}Z^{\bot },\nu -\nu _e \right\rangle + \langle [X^{\bot },Z^{\top }],\nu \rangle + div_{\Sigma }(Z^{\top })\langle X^{\top }, \nu \rangle \\&- \langle Z^{\bot }, H \rangle \langle X^{\top }, \nu \rangle - \langle X^{\bot }, H \rangle \langle Z^{\top },\nu \rangle . \end{aligned}$$

\(\Xi _1\) is linear in X and Z, is of first order in these entries, and \(\Xi _1 \rightarrow 0\) smoothly as \(H\rightarrow 0\) smoothly. \(\Xi _2\) depends on X and Z similarly, and \(\Xi _2 \rightarrow 0\) smoothly as \(H\rightarrow 0\) and \(\nu \rightarrow \nu _e\) (for that forces \(X^{\bot }\), \(X^{\top }\), \(Z^{\bot }\) and \(Z^{\top }\) to become tangent to \(\partial {\mathcal {N}}\))). In the case that \(\Sigma \) is uniformly and smoothly close to a fixed minimal and free boundary hypersurface, we will have \(\Xi _1, \Xi _2\) uniformly small, and \(\langle \nabla _{X^{\perp }} Z^{\perp }, \nu _e \rangle \) uniformly close to \(\langle II^{\partial {\mathcal {N}}}( (X^{\bot })^{\top _{\partial {\mathcal {N}}}}, (Z^{\bot })^{\top _{\partial {\mathcal {N}}}}),\nu _e\rangle \) (in a smooth sense).

Appendix B: Proof of Proposition 21

Proof of Proposition 21

Here we need to show that if g is close enough to the Euclidean metric, and tw are also small enough, then one can find an implicitly defined function \(u=u(t,g,w)\) so that \(\Phi (t,g,w,u(t,g,w))=(0,0,0)\).

The functional \(\Phi \) is \(C^1\) (see e.g., Appendix of [39]) and its differential can be computed using the result of Proposition 17 in [2], so that

$$\begin{aligned} D_4\Phi (t,\delta ,0,0)[v]=\frac{d}{ds}_{|{s=0}}\Phi (t,\delta ,0,sv) = \left( \Delta _{\delta }v,\frac{\partial v}{\partial \nu _{\delta }},v|_{\Gamma _2}\right) \end{aligned}$$

where \(\delta \) stands for the Euclidean metric and \(\nu _{\delta }=-\,\frac{\partial }{\partial x^1}\) in the standard Euclidean coordinates we are adopting.

In order to apply the implicit function theorem we need to study the mapping properties of the linear operator

$$\begin{aligned} D_4\Phi (t,\delta ,0,0): \ Y\rightarrow Z_1\times Z_2\times Z_3. \end{aligned}$$

First of all, it follows at once from Theorem 6,I in [29] together with standard Schauder estimates that for any triple \((f_1,f_2,f_3)\in Z_1\times Z_2\times Z_3\) the problem

$$\begin{aligned} {\left\{ \begin{array}{ll} \Delta _{\delta }v=f_1 &{} \text {in} \ S_{\theta }\\ \frac{\partial v}{\partial \nu _{\delta }}=f_2 &{} \text {in} \ \Gamma _1 \\ v=f_3 &{} \text {in} \ \Gamma _2 \end{array}\right. } \end{aligned}$$
(B.1)

admits one (and only one) solution \(u\in C(\overline{S_{\theta }})\cap C^{2,\alpha }(\Omega )\) where \(\Omega \) is any relatively compact domain in \(\overline{S_{\theta }}\setminus (\Gamma _1\cap \Gamma _2)\). Of course, this implies at once that the map above is injective. For what concerns surjectivity, it is then enough to invoke Theorem 1 in [6], which ensures that any bounded solution to (B.1) does in fact belong to \(C^{2,\alpha }(\overline{S_{\theta }})\) provided \(\alpha <\alpha _0\) for \(\alpha _0=\left\{ \frac{\pi }{2\theta }\right\} \) where \(\left\{ x\right\} \in [0,1)\) is defined by \(\left\{ x\right\} =x-\lfloor x \rfloor \). In fact, it follows from the explicit barrier construction presented in the first part of the proof of Lemma 1 in the same reference, aimed at handling the situation locally around the edge points, that one gains a global Schauder estimate of the form

$$\begin{aligned} \Vert u\Vert _Y\le C\left( \Vert u\Vert _{C^0(\overline{S_{\theta }})} + \Vert f_1\Vert _{Z_1}+\Vert f_2\Vert _{Z_2}+\Vert f_3\Vert _{Z_3}\right) \end{aligned}$$
(B.2)

for any solution \(u\in Y\) of (B.1). In this respect, all we need to check is that this can in fact be upgraded to

$$\begin{aligned} \Vert u\Vert _Y\le C'\left( \Vert f_1\Vert _{Z_1}+\Vert f_2\Vert _{Z_2}+\Vert f_3\Vert _{Z_3}\right) \end{aligned}$$

as this patently completes the proof that \(D_4\Phi (t,\delta ,0,0): \ Y\rightarrow Z_1\times Z_2\times Z_3\) is indeed a Banach isomorphism. This is rather standard: assuming by contradiction that were not the case, one could find a sequence \(\left\{ u_k\right\} \subset Y\) such that, possibly by renormalizing

$$\begin{aligned} {\left\{ \begin{array}{ll} \Vert u_k\Vert _Y=1 \\ \Vert \Delta _{\delta }u_k\Vert _{Z_1}+\Vert \frac{\partial u_k}{\partial \nu _{\delta }}\Vert _{Z_2}+\Vert u_k\Vert _{Z_3}\le 1/k \end{array}\right. } \end{aligned}$$

for all \(k\ge 1\) and hence, invoking the Arzelá–Ascoli compactness theorem

$$\begin{aligned} u_k\rightarrow u \ \text {in} \ C^{2}(\overline{S_{\theta }}) \end{aligned}$$

for a subsequence which we shall not rename. In particular, one has at the same time

$$\begin{aligned} \Delta _{\delta }u_k \rightarrow \Delta _{\delta }u \ \ \text {in} \ C^{0}(\overline{S_{\theta }}), \ \text {and} \ \Delta _{\delta }u_k\rightarrow 0 \ \text {in} \ C^{0,\alpha }(\overline{S_{\theta }}) \end{aligned}$$

hence \(u\in C^{2}(\overline{S_{\theta }})\) must be a solution of the homogeneous problem

$$\begin{aligned} {\left\{ \begin{array}{ll} \Delta _{\delta }u=0 &{} \text {in} \ S_{\theta }\\ \frac{\partial u}{\partial \nu _{\delta }}=0 &{} \text {in} \ \Gamma _1 \\ u=0 &{} \text {in} \ \Gamma _2 \end{array}\right. } \end{aligned}$$
(B.3)

so that we conclude \(u=0\) by virtue of the aforementioned result by C. Miranda. But then \(u_k\rightarrow 0\) in \(C^2(\overline{S_{\theta }})\) and thus inequality (B.2) applied to \(u_k\) immediately implies that \(\Vert u_k\Vert _Y\rightarrow 0\) as we let \(k\rightarrow \infty \), contrary to the fact that each function of the sequence has been rescaled so to have norm one. This contradiction completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrozio, L., Carlotto, A. & Sharp, B. Compactness analysis for free boundary minimal hypersurfaces. Calc. Var. 57, 22 (2018). https://doi.org/10.1007/s00526-017-1281-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1281-y

Mathematics Subject Classification

Navigation