Skip to main content
Log in

Cubic convergence order yielding iterative regularization methods for ill-posed Hammerstein type operator equations

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

For the solution of nonlinear ill-posed problems, a Two Step Newton-Tikhonov methodology is proposed. Two implementations are discussed and applied to nonlinear ill-posed Hammerstein type operator equations \(KF(x)=y\), where K defines the integral operator and F the function of the solution x on which K operates. In the first case, the Fr\(\acute{e}\)chet derivative of F is invertible in a neighbourhood which includes the initial guess \(x_0\) and the solution \({\hat{x}}\). In the second case, F is monotone. For both cases, local cubic convergence is established and order optimal error bounds are obtained by choosing the regularization parameter according to the the balancing principle of Pereverzev and Schock (2005).We also present the results of computational experiments giving the evidence of the reliability of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Argyros, I.K., Hilout, S.: A convergence analysis for directional two-step Newton methods. Numer. Algor. 55, 503–528 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Engl, H.W.: Regularization methods for the stable solution of inverse problems. Surveys Math. Ind. 3, 71–143 (1993)

    MathSciNet  MATH  Google Scholar 

  3. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1993)

    MATH  Google Scholar 

  4. Engl, H.W., Kunisch, K., Neubauer, A.: Convergence rates for Tikhonov regularization of nonlinear ill-posed problems. Inverse Probl. 5, 523–540 (1989)

    Article  MATH  Google Scholar 

  5. George, S.: Newton-Tikhonov regularization of ill-posed Hammerstein operator equation. J. Inverse Ill-Posed Probl. 2(14), 135–146 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. George, S., Elmahdy, A.I.: A quadratic convergence yielding iterative method for nonlinear ill-posed operator equations. Comput. Methods Appl. Math. 12(1), 32–45 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. George, S., Kunhanandan, M.: An iterative regularization method for Ill-posed Hammerstein type operator equation. J. Inv. Ill-Posed Probl. 17, 831–844 (2009)

    MathSciNet  MATH  Google Scholar 

  8. George, S., Nair, M.T.: A modified Newton–Lavrentiev regularization for nonlinear ill-posed Hammerstein-Type operator equation. J. Complex. 24, 228–240 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. George, S., Shobha, M.E.: A regularized dynamical system method for nonlinear ill-posed Hammerstein type operator equations. J. Appl. Math. Bio 1(1), 65–78 (2011)

    MATH  Google Scholar 

  10. Jin Qi-nian and Hou Zong-yi: On an a posteriori parameter choice strategy for Tikhonov regularization of nonlinear ill-posed problems. Numer. Math 83, 139–159 (1990)

    MathSciNet  MATH  Google Scholar 

  11. Kaltenbacher, B., Neubauer, A., Scherzer, O.: Iterative Regularisation Methods for Nolinear Ill-Posed Porblems. de Gruyter, Berlin, New York (2008)

  12. Krasnoselskii, M.A., Zabreiko, P.P., Pustylnik, E.I., Sobolevskii, P.E.: Integral Operators in Spaces of Summable Functions. Translated by Ando, T., Noordhoff International publishing, Leyden (1976)

  13. Natterer, F.: The Mathematics of Computerized Tomography. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  14. Nair, M.T., Ravishankar, P.: Regularized versions of continuous newton’s method and continuous modified newton’s method under general source conditions. Numer. Funct. Anal. Optim. 29(9–10), 1140–1165 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Neubauer, A.: An a posteriori parameter choice for Tikhonov regularizationin Hilbert scales leading to optimal convergence rate. SIAM. J.Num. Anal 25(6), 1313–1326 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mahale, P., Nair, M.T.: A Simplified generalized Gauss-Newton method for nonlinear ill-posed problems. Math. Comp. 78(265), 171–184 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pereverzev, S., Schock, E.: On the adaptive selection of the parameter in regularization of ill-posed problems. SIAM. J. Num. Anal 43(5), 2060–2076 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ramm, A.G.: Inverse Problems, Mathematical and Analytical Techniques with Applications, to Engineering. Springer, Berlin (2005)

    MATH  Google Scholar 

  19. Ramm, A.G., Smirnova, A.B., Favini, A.: Continuous modified Newton’s-type method for nonlinear operator equations. Ann. Mat. Pura Appl. 182, 37–52 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Scherzer, O., Engl, H.W., Kunisch, K.: Optimal a posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems. SIAM. J. Num. Anal. 30(6), 1796–1838 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Semenova, E.V.: Lavrentiev regularization and balancing principle for solving ill-posed problems with monotone operators. Comput. Methods Appl. Math. (4), 444–454 (2010)

Download references

Acknowledgments

The authors thank Prof. Bob Anderssen for his detailed suggestions and comments. Ms. Shobha, thanks National Institute of Technology Karnataka, India, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shobha Monnanda Erappa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argyros, I.K., George, S. & Monnanda Erappa, S. Cubic convergence order yielding iterative regularization methods for ill-posed Hammerstein type operator equations. Rend. Circ. Mat. Palermo, II. Ser 66, 303–323 (2017). https://doi.org/10.1007/s12215-016-0254-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-016-0254-x

Keywords

Mathematics Subject Classification

Navigation