Skip to main content

Regularization Methods for Ill-Posed Problems

  • Living reference work entry
  • First Online:
Handbook of Mathematical Methods in Imaging

Abstract

In this chapter are outlined some aspects of the mathematical theory for direct regularization methods aimed at the stable approximate solution of nonlinear ill-posed inverse problems. The focus is on Tikhonov type variational regularization applied to nonlinear ill-posed operator equations formulated in Hilbert and Banach spaces. The chapter begins with the consideration of the classical approach in the Hilbert space setting with quadratic misfit and penalty terms, followed by extensions of the theory to Banach spaces and present assertions on convergence and rates concerning the variational regularization with general convex penalty terms. Recent results refer to the interplay between solution smoothness and nonlinearity conditions expressed by variational inequalities. Six examples of parameter identification problems in integral and differential equations are given in order to show how to apply the theory of this chapter to specific inverse and ill-posed problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Probl. 10(6), 1217–1229 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ammari, H.: An Introduction to Mathematics of Emerging Biomedical Imaging. Springer, Berlin (2008)

    MATH  Google Scholar 

  3. Anzengruber, S.W., Hofmann, B., Mathé, P.: Regularization properties of the discrepancy principle for Tikhonov regularization in Banach spaces. Appl. Anal. (2013). http://dx.doi.org/10.1080/00036811.2013.833326.

  4. Anzengruber, S.W., Hofmann, B., Ramlau, R.: On the interplay of basis smoothness and specific range conditions occurring in sparsity regularization. Inverse Probl. 29(12), 125002(21pp) (2013)

    Google Scholar 

  5. Anzengruber, S.W., Ramlau, R.: Morozov’s discrepancy principle for Tikhonov-type functionals with nonlinear operators. Inverse Probl. 26(2), 025001(17pp) (2010)

    Google Scholar 

  6. Anzengruber, S.W., Ramlau, R.: Convergence rates for Morozov’s discrepancy principle using variational inequalities. Inverse Probl. 27(10), 105007(18pp) (2011)

    Google Scholar 

  7. Bakushinsky, A., Goncharsky, A.: Ill-Posed Problems: Theory and Applications. Kluwer, Dordrecht (1994)

    Book  Google Scholar 

  8. Bakushinsky, A.B., Kokurin, M.Yu.: Iterative Methods for Approximate Solution of Inverse Problems. Springer, Dordrecht (2004)

    MATH  Google Scholar 

  9. Banks, H.T., Kunisch, K.: Estimation Techniques for Distributed Parameter Systems. Birkhäuser, Boston, (1989)

    Book  MATH  Google Scholar 

  10. Baumeister, J.: Stable Solution of Inverse Problems. Vieweg, Braunschweig (1987)

    Book  MATH  Google Scholar 

  11. Baumeister, J.: Deconvolution of appearance potential spectra. In: Kleinman R., Kress R., Martensen E. (eds.) Direct and Inverse Boundary Value Problems. Methoden und Verfahren der mathematischen Physik, vol. 37, pp. 1–13. Peter Lang, Frankfurt am Main (1991)

    Google Scholar 

  12. Benning, M., Burger, M.: Error estimates for general fidelities. Electron. Trans. Numer. Anal. 38, 44–68 (2011)

    MATH  MathSciNet  Google Scholar 

  13. Benning, M., Burger, M.: Ground states and singular vectors of convex variational regularization methods. arXiv:1211.2057v1 (2012)

    Google Scholar 

  14. Beretta, E., Vessella, S.: Stable determination of boundaries from Cauchy data. SIAM J. Math. Anal. 30, 220–232 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. Institute of Physics Publishing, Bristol (1998)

    Book  MATH  Google Scholar 

  16. Bonesky, T., Kazimierski, K., Maass, P., Schöpfer, F., Schuster, T.: Minimization of Tikhonov functionals in Banach spaces. Abstr. Appl. Anal. Art. ID 192679, 19pp (2008)

    Google Scholar 

  17. Boţ, R.I., Hofmann, B.: An extension of the variational inequality approach for obtaining convergence rates in regularization of nonlinear ill-posed problems. J. Integral Equ. Appl. 22(3), 369–392 (2010)

    Article  MATH  Google Scholar 

  18. Boţ, R.I., Hofmann, B.: The impact of a curious type of smoothness conditions on convergence rates in \(\boldsymbol{\ell^{1}}\)-regularization. Eurasian J. Math. Comput. Appl. 1(1), 29–40 (2013)

    Google Scholar 

  19. Bredies, K., Lorenz, D.A.: Regularization with non-convex separable constraints. Inverse Probl. 25(8), 085011(14pp) (2009)

    Google Scholar 

  20. Bukhgeim, A.L., Cheng, J., Yamamoto, M.: Stability for an inverse boundary problem of determining a part of a boundary. Inverse Probl 15, 1021–1032 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Burger, M., Flemming, J., Hofmann, B.: Convergence rates in 1-regularization if the sparsity assumption fails. Inverse Probl. 29(2), 025013(16pp) (2013)

    Google Scholar 

  22. Burger, M., Osher, S.: Convergence rates of convex variational regularization. Inverse Probl. 20(5), 1411–1421 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Burger, M., Resmerita, E., He, L.: Error estimation for Bregman iterations and inverse scale space methods in image restoration. Computing 81(2–3), 109–135 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Bürger, S., Hofmann, B.: About a deficit in low order convergence rates on the example of autoconvolution. Appl. Anal. (2014, to appear). Preprint 2013–17, Preprintreihe der Fakultät für Mathematik der TU Chemnitz, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-130630.

  25. Chavent, G.: Nonlinear Least Squares for Inverse Problems. Springer, Dordrecht (2009)

    MATH  Google Scholar 

  26. Chavent, G., Kunisch, K.: On weakly nonlinear inverse problems. SIAM J. Appl. Math. 56(2), 542–572 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  27. Chavent, G., Kunisch, K.: State space regularization: geometric theory. Appl. Math. Opt. 37(3), 243–267 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. Cheng, J., Hofmann, B., Lu, S.: The index function and Tikhonov regularization for ill-posed problems. J. Comput. Appl. Math. (2013). http://dx.doi.org/10.1016/j.cam.2013.09.035.

  29. Cheng, J., Nakamura, G.: Stability for the inverse potential problem by finite measurements on the boundary. Inverse Probl. 17, 273–280 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Cheng, J., Yamamoto, M.: Conditional stabilizing estimation for an integral equation of first kind with analytic kernel. J. Integral Equ. Appl. 12, 39–61 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  31. Cheng, J., Yamamoto, M.: One new strategy for a priori choice of regularizing parameters in Tikhonov’s regularization. Inverse Probl. 16(4), L31–L38 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Clason, C.: L fitting for inverse problems with uniform noise. Inverse Probl. 28(10), 104007(18pp) (2012)

    Google Scholar 

  33. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edn. Springer, New York (2013)

    Book  MATH  Google Scholar 

  34. Dai, Z., Lamm, P.K.: Local regularization for the nonlinear inverse autoconvolution problem. SIAM J. Numer. Anal. 46(2), 832–868 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  35. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996, 2000)

    Google Scholar 

  36. Engl, H.W., Isakov, V.: On the identifiability of steel reinforcement bars in concrete from magnetostatic measurements. Eur. J. Appl. Math. 3, 255–262 (1992)

    Article  MathSciNet  Google Scholar 

  37. Engl, H.W., Kunisch, K., Neubauer, A.: Convergence rates for Tikhonov regularisation of non-linear ill-posed problems. Inverse Probl. 5(4), 523–540 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  38. Engl, H.W., Zou, J.: A new approach to convergence rate analysis of Tikhonov regularization for parameter identification in heat conduction. Inverse Probl. 16(6), 1907–1923 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  39. Favaro, P., Soatto, S. 3-D Shape Estimation and Image Restoration. Exploiting Defocus and Motion Blur. Springer, London (2007)

    MATH  Google Scholar 

  40. Fischer, B., Modersitzki, J.: Ill-posed medicine – an introduction to image registration. Inverse Probl. 24(3), 034008(16pp) (2008)

    Google Scholar 

  41. Flemming, J.: Generalized Tikhonov Regularization and Modern Convergence Rate Theory in Banach Spaces. Shaker Verlag, Aachen (2012)

    MATH  Google Scholar 

  42. Flemming, J.: Variational smoothness assumptions in convergence rate theory – an overview. J. Inverse Ill-Posed Probl. 21(3), 395–409 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  43. Flemming, J.: Regularization of autoconvolution and other ill-posed quadratic equations by decomposition. J. Inverse and Ill-Posed Probl. 22 (2014). doi:10.1515/jip-2013-0038

    Google Scholar 

  44. Flemming, J., Hofmann, B.: A new approach to source conditions in regularization with general residual term. Numer. Funct. Anal. Optim. 31(3), 254–284 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  45. Flemming, J., Hofmann, B.: Convergence rates in constrained Tikhonov regularization: equivalence of projected source conditions and variational inequalities. Inverse Probl. 27(8), 085001(11pp) (2011)

    Google Scholar 

  46. Fleischer, G., Hofmann, B.: On inversion rates for the autoconvolution equation. Inverse Probl. 12(4), 419–435 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  47. Gerth, D., Hofmann, B., Birkholz, S., Koke, S., Steinmeyer, G.: Regularization of an autoconvolution problem in ultrashort laser pulse characterization. Inverse Probl. Sci. Eng. 22(2), 245–266 (2014)

    Article  MathSciNet  Google Scholar 

  48. Gorenflo, R., Hofmann, B.: On autoconvolution and regularization. Inverse Probl. 10(2), 353–373 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  49. Grasmair, M.: Well-posedness and convergence rates for sparse regularization with sublinear l q penalty term. Inverse Probl. Imaging 3(3), 383–387 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  50. Grasmair, M.: Generalized Bregman distances and convergence rates for non-convex regularization methods. Inverse Probl. 26(11), 115014(16pp) (2010)

    Google Scholar 

  51. Grasmair, M.: Variational inequalities and higher order convergence rates for Tikhonov regularisation on Banach spaces. J. Inverse Ill-Posed Probl. 21(3), 379–394 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  52. Grasmair, M., Haltmeier, M., Scherzer, O.: Sparse regularization with q penalty term. Inverse Probl. 24(5), 055020(13pp) (2008)

    Google Scholar 

  53. Grasmair, M., Haltmeier, M., Scherzer, O.: The residual method for regularizing ill-posed problems. Appl. Math. Comput. 218(6), 2693–2710 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  54. Groetsch, C.W.: The Theory of Tikhonov Regularization for Fredholm Integral Equations of the First Kind. Pitman, Boston (1984)

    Google Scholar 

  55. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia (1998)

    Book  Google Scholar 

  56. Hao, D.N., Quyen, T.N.T.: Convergence rates for Tikhonov regularization of coefficient identification problems in Laplace-type equations. Inverse Probl. 26(12), 125014(23pp) (2010)

    Google Scholar 

  57. Hein, T.: Tikhonov regularization in Banach spaces – improved convergence rates results. Inverse Probl. 25(3), 035002(18pp) (2009)

    Google Scholar 

  58. Hein, T., Hofmann, B.: Approximate source conditions for nonlinear ill-posed problems – chances and limitations. Inverse Probl. 25(3), 035003(16pp) (2009)

    Google Scholar 

  59. Hofmann, B.: Regularization for Applied Inverse and Ill-Posed Problems. Teubner, Leipzig (1986)

    Book  MATH  Google Scholar 

  60. Hofmann, B., Kaltenbacher, B., Pöschl, C., Scherzer, O.: A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators. Inverse Probl. 23(3), 987–1010 (2007)

    Article  MATH  Google Scholar 

  61. Hofmann, B., Mathé, P.: Analysis of profile functions for general linear regularization methods. SIAM J. Numer. Anal. 45(3), 1122–1141 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  62. Hofmann, B., Mathé, P.: Parameter choice in Banach space regularization under variational inequalities. Inverse Probl. 28(10), 104006(17pp) (2012)

    Google Scholar 

  63. Hofmann, B., Mathé, P., Pereverzev, S.V.: Regularization by projection: approximation theoretic aspects and distance functions. J. Inverse Ill-Posed Probl. 15(5), 527–545 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  64. Hofmann, B., Scherzer, O.: Factors influencing the ill-posedness of nonlinear problems. Inverse Probl. 10(6), 1277–1297 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  65. Hofmann, B., Yamamoto, M.: On the interplay of source conditions and variational inequalities for nonlinear ill-posed problems. Appl. Anal. 89(11), 1705–1727 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  66. Hohage, T., Pricop, M.: Nonlinear Tikhonov regularization in Hilbert scales for inverse boundary value problems with random noise. Inverse Probl. Imaging 2(2), 271–290 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  67. Imanuvilov, O.Yu., Yamamoto, M.: Global uniqueness and stability in determining coefficients of wave equations. Commun. Partial Differ. Equ. 26, 1409–1425 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  68. Isakov, V.: Inverse Problems for Partial Differential Equations. Springer, New York (2006)

    MATH  Google Scholar 

  69. Ito, K., Kunisch, K.: On the choice of the regularization parameter in nonlinear inverse problems. SIAM J. Optim. 2(3), 376–404 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  70. Janno, J., Wolfersdorf, L.v.: A general class of autoconvolution equations of the third kind. Z. Anal. Anwendungen 24(3), 523–543 (2005)

    Google Scholar 

  71. Jiang, D., Feng, H., Zou, J.: Convergence rates of Tikhonov regularizations for parameter identification in a parabolic-elliptic system. Inverse Probl. 28(10), 104002(20pp) (2012)

    Google Scholar 

  72. Jin, B., Zou, J.: Augmented Tikhonov regularization. Inverse Probl. 25(2), 025001(25pp) (2009)

    Google Scholar 

  73. Kabanikhin, S.I.: Inverse and Ill-Posed Problems – Theory and Applications. Inverse and Ill-Posed Problems Series, vol. 55. Walter de Gruyter, Berlin (2011)

    Google Scholar 

  74. Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems. Springer, New York (2005)

    MATH  Google Scholar 

  75. Kaltenbacher, B.: A note on logarithmic convergence rates for nonlinear Tikhonov regularization. J. Inverse Ill-Posed Probl. 16(1), 79–88 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  76. Kaltenbacher, B., Neubauer, A., Scherzer, O.: Iterative Regularization Methods for Nonlinear Ill-Posed Problems. Walter de Gruyter, Berlin (2008)

    Book  MATH  Google Scholar 

  77. Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems, 2nd edn. Springer, New York (2011)

    Book  MATH  Google Scholar 

  78. Klann, E., Kuhn, M., Lorenz, D.A., Maass, P., Thiele, H.: Shrinkage versus deconvolution. Inverse Probl. 23(5), 2231–2248 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  79. Kress, R.: Linear Integral Equations, 2nd edn. Springer, New York (1999)

    Book  MATH  Google Scholar 

  80. Lamm, P.K., Dai, Z.: On local regularization methods for linear Volterra equations and nonlinear equations of Hammerstein type. Inverse Probl. 21(5), 1773–1790 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  81. Lattès, R., Lions, J.-L.: The Method of Quasi-Reversibility. Applications to Partial Differential Equations. Modern Analytic and Computational Methods in Science and Mathematics, vol. 18. American Elsevier, New York (1969)

    Google Scholar 

  82. Lorenz, D., Rösch, A.: Error estimates for joint Tikhonov and Lavrentiev regularization of constrained control problems. Appl. Anal. 89(11), 1679–1691 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  83. Lorenz, D., Worliczek, N.: Necessary conditions for variational regularization schemes. Inverse Probl. 29(7), 075016(19pp), (2013)

    Google Scholar 

  84. Louis, A.K.: Inverse und schlecht gestellte Probleme. Teubner, Stuttgart (1989)

    Book  MATH  Google Scholar 

  85. Louis, A.K.: Approximate inverse for linear and some nonlinear problems. Inverse Probl. 11(6), 1211–1223 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  86. Liu, F., Nashed, M.Z.: Regularization of nonlinear ill-posed variational inequalities and convergence rates. Set-Valued Anal. 6(4), 313–344 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  87. Lu, S., Flemming, J.: Convergence rate analysis of Tikhonov regularization for nonlinear ill-posed problems with noisy operators. Inverse Probl. 28(10), 104003(19pp) (2012)

    Google Scholar 

  88. Lu, S., Pereverzev, S.V., Ramlau, R.: An analysis of Tikhonov regularization for nonlinear ill-posed problems under a general smoothness assumption. Inverse Probl. 23(1), 217–230 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  89. Mahale, P., Nair, M.T.: Tikhonov regularization of nonlinear ill-posed equations under general source conditions. J. Inverse Ill-Posed Probl. 15(8), 813–829 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  90. Mathé, P., Pereverzev, S.V.: Geometry of linear ill-posed problems in variable Hilbert scales. Inverse Probl. 19(3), 789–803 (2003)

    Article  MATH  Google Scholar 

  91. Modersitzki, J.: FAIR. Flexible Algorithms for Image Registration. SIAM, Philadelphia (2009)

    Google Scholar 

  92. Morozov, V.A.: Methods for Solving Incorrectly Posed Problems. Springer, New York (1984)

    Book  Google Scholar 

  93. Natterer, F.: Imaging and inverse problems of partial differential equations. Jahresber. Dtsch. Math.-Ver. 109(1), 31–48 (2007)

    MATH  MathSciNet  Google Scholar 

  94. Natterer, F., Wübbeling, F.: Mathematical Methods in Image Reconstruction. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  95. Neubauer, A.: Tikhonov regularization for nonlinear ill-posed problems: optimal convergence rate and finite dimensional approximation. Inverse Probl. 5(4), 541–558 (1989)

    Google Scholar 

  96. Neubauer, A.: On enhanced convergence rates for Tikhonov regularization of nonlinear ill-posed problems in Banach spaces. Inverse Probl. 25(6), 065009(10pp) (2009)

    Google Scholar 

  97. Neubauer, A., Hein, T., Hofmann, B., Kindermann, S., Tautenhahn, U.: Improved and extended results for enhanced convergence rates of Tikhonov regularization in Banach spaces. Appl. Anal. 89(11), 1729–1743 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  98. Phillips, D.L.: A technique for the numerical solution of certain integral equations of the first kind. J. ACM 9(1), 84–97 (1962)

    Article  MATH  Google Scholar 

  99. Pöschl, C.: Tikhonov Regularization with General Residual Term. PhD thesis, University of Innsbruck, Austria, (2008)

    Google Scholar 

  100. Ramlau, R.: Morozov’s discrepancy principle for Tikhonov-regularization of nonlinear operators. Numer. Funct. Anal. and Optim. 23(1–2), 147–172 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  101. Ramlau, R.: TIGRA – an iterative algorithm for regularizing nonlinear ill-posed problems. Inverse Probl. 19(2), 433–465 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  102. Resmerita, E.: Regularization of ill-posed problems in Banach spaces: convergence rates. Inverse Probl. 21(4), 1303–1314 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  103. Resmerita, E., Scherzer, O.: Error estimates for non-quadratic regularization and the relation to enhancement. Inverse Probl. 22(3), 801–814 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  104. Rondi, L.: Uniqueness and stability for the determination of boundary defects by electrostatic measurements. Proc. R. Soc. Edinb. Sect. A 130, 1119–1151 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  105. Scherzer, O., Engl, H.W., Kunisch, K.: Optimal a posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems. SIAM J. Numer. Anal. 30(6), 1796–1838 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  106. Scherzer, O. (ed.): Mathematical Models for Registration and Applications to Medical Imaging. Mathematics in Industry 10. The European Consortium for Mathematics in Industry. Springer, Berlin (2006)

    Google Scholar 

  107. Scherzer, O., Grasmair, M., Grossauer, H., Haltmeiner, M., Lenzen, F.: Variational Methods in Imaging. Springer, New York (2009)

    MATH  Google Scholar 

  108. Schleicher, K.-Th., Schulz, S.W., Gmeiner, R., Chun, H.-U.: A computational method for the evaluation of highly resolved DOS functions from APS measurements. J. Electron Spectrosc. Relat. Phenom. 31, 33–56 (1983)

    Article  Google Scholar 

  109. Schuster, T., Kaltenbacher, B., Hofmann, B., Kazimierski, K.S.: Regularization Methods in Banach Spaces. Radon Series on Computational and Applied Mathematics, vol. 10. Walter de Gruyter, Berlin/Boston (2012)

    Google Scholar 

  110. Seidman, T.I., Vogel, C.R.: Well posedness and convergence of some regularization methods for nonlinear ill posed problems. Inverse Probl. 5(2), 227–238 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  111. Tautenhahn, U.: On a general regularization scheme for nonlinear ill-posed problems. Inverse Probl. 13(5), 1427–1437 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  112. Tautenhahn, U.: On the method of Lavrentiev regularization for nonlinear ill-posed problems. Inverse Probl. 18(1), 191–207 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  113. Tautenhahn, U., Jin, Q.: Tikhonov regularization and a posteriori rules for solving nonlinear ill-posed problems. Inverse Probl. 19(1), 1–21 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  114. Tikhonov, A.N.: Solution of incorrectly formulated problems and the regularization method. Dokl. Akad. Nauk SSR 151, 501–504 (1963)

    Google Scholar 

  115. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Wiley, New York (1977)

    MATH  Google Scholar 

  116. Tikhonov, A.N., Goncharsky, A.V., Stepanov, V.V., Yagola, A.G.: Numerical Methods for the Solution of Ill-Posed Problems. Kluwer, Dordrecht (1995)

    Book  MATH  Google Scholar 

  117. Tikhonov, A.N., Leonov, A.S., Yagola, A.G.: Nonlinear Ill-Posed Problems, vols. 1 and 2. Series Applied Mathematics and Mathematical Computation, vol. 14. Chapman & Hall, London (1998)

    Google Scholar 

  118. Vasin, V.V.: Some tendencies in the Tikhonov regularization of ill-posed problems. J. Inverse Ill-Posed Probl. 14(8), 813–840 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  119. Vogel, C.: Computational Methods for Inverse Problems. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  120. Werner, F., Hohage, T.: Convergence rates in expectation for Tikhonov-type regularization of inverse problems with Poisson data. Inverse Probl. 28(10), 104004(15pp) (2012)

    Google Scholar 

  121. Yamamoto, M.: On ill-posedness and a Tikhonov regularization for a multidimensional inverse hyperbolic problem. J. Math. Kyoto Univ. 36, 825–856 (1996)

    MATH  MathSciNet  Google Scholar 

  122. Zarzer, C.A.: On Tikhonov regularization with non-convex sparsity constraints. Inverse Probl. 25(2), 025006(13pp) (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Cheng, J., Hofmann, B. (2014). Regularization Methods for Ill-Posed Problems. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-3-642-27795-5_3-5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27795-5_3-5

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-3-642-27795-5

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics