Skip to main content
Log in

Accelerating fronts in semilinear wave equations

  • Published:
Rendiconti del Circolo Matematico di Palermo (1952 -) Aims and scope Submit manuscript

Abstract

We study dynamics of interfaces in solutions of the equation \( \varepsilon \Box u + \frac{1}{\varepsilon }f_\varepsilon (u)=0\), for \(f_\varepsilon \) of the form \(f_\varepsilon (u) = (u^2-1)(2u- \varepsilon \kappa )\), for \(\kappa \in {\mathbb R}\), as well as more general, but qualitatively similar, nonlinearities. We prove that for suitable initial data, solutions exhibit interfaces that sweep out timelike hypersurfaces of mean curvature proportional to \(\kappa \). In particular, in one dimension these interfaces behave like a relativistic point particle subject to constant acceleration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Our sign conventions for the unit normal, and hence the mean curvature, are described in Sect. 7.3, where we also review some basic properties of mean curvature. These sign conventions are such that the curve around which the solution in Sect. 2 concentrates, with the orientation we have implicitly chosen there, in fact has “mean curvature” equal to \(-\kappa \) rather than \(\kappa \).

References

  1. Aronson, D.G., Weinburger, H.: Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30, 33–76 (1978)

    Article  MATH  Google Scholar 

  2. Barles, G., Soner, H.M., Souganidis, P.E.: Front propagation and phase field theory. SIAM J. Control Optim. 31(2), 439–469 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bellettini, G., Novaga, M., Orlandi, G.: Time-like minimal submanifolds as singular limits of nonlinear wave equations. Phys. D 239(6), 335–339 (2010)

  4. Coleman, S.: Fate of the false vacuum: semiclassical theory. Phys. Rev. D 15, 2929–2036 (1977)

    Article  Google Scholar 

  5. Fife, P.C., McLeod, B.M.: The approach of solutions of nonlinear differential diffusion equations to travelling solutions. Arch. Ration. Mech. Anal. 65, 335–361 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gustafson, S., Sigal, I.M.: Effective dynamics of magnetic vortices. Adv. Math. 199(2), 448–498 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hutchinson, J.E., Tonegawa, Y.: Convergence of phase interfaces in the van der Waals–Cahn–Hilliard theory. Calc. Var. Partial Differ. Equ. 10(1), 49–84 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jerrard, R.L.: Vortex dynamics for the Ginzburg–Landau wave equation. Calc. Var. Partial Differ. Equ. 9(1), 1–30 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Jerrard, R.L.: Defects in semilinear wave equations and timelike minimal surfaces in Minkowski space. Anal. PDE 4(2), 285–340 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kolmogorov, A.N., Petrovskii, I.G., Piskunov, N.S.: Étude de l’equations de la chaleur, de la matiére et son application á un problème biologique. Bull. Moskov. Gos. Univ. Mat. Mekh. 1, 125 (1937)

    Google Scholar 

  11. Lin, F.H.: Vortex dynamics for the nonlinear wave equation. Commun. Pure Appl. Math. 52(6), 737–761 (1999)

    Article  Google Scholar 

  12. Milbredt, O.: The Cauchy problem for membranes. Dissertation, Freie Universität Berlin (2008)

  13. Pacard, F., Ritoré, M.: From constant mean curvature hypersurfaces to the gradient theory of phase transitions. J. Differ. Geom. 64(3), 359–423 (2003)

    MATH  Google Scholar 

  14. Rotstein, H.G., Nepomnyashchy, A.A.: Dynamics of kinks in two-dimensional hyperbolic models. Phys. D 136(3–4), 245–265 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Stuart, D.M.A.: The geodesic hypothesis and non-topological solitons on pseudo-Riemannian manifolds. Ann. Sci. École Norm. Sup. (4) 37(2), 312–362 (2004)

  16. Wald, R.: General Relativity. University of Chicago Press, USA (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Jerrard.

Additional information

R. L. Jerrard was partially supported by the National Science and Engineering Research Council of Canada under operating Grant 261955. The authors are grateful to Kyle Thompson for pointing out an error in the statement of Theorem 3.2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galvão-Sousa, B., Jerrard, R.L. Accelerating fronts in semilinear wave equations. Rend. Circ. Mat. Palermo 64, 117–148 (2015). https://doi.org/10.1007/s12215-014-0185-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-014-0185-3

Keywords

Mathematics Subject Classification

Navigation