Skip to main content
Log in

Stress tolerance during diapause and quiescence of the brine shrimp, Artemia

  • Mini Review
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Oviparously developing embryos of the brine shrimp, Artemia, arrest at gastrulation and are released from females as cysts before entering diapause, a state of dormancy and stress tolerance. Diapause is terminated by an external signal, and growth resumes if conditions are permissible. However, if circumstances are unfavorable, cysts enter quiescence, a dormant stage that continues as long as adverse conditions persist. Artemia embryos in diapause and quiescence are remarkably resistant to environmental and physiological stressors, withstanding desiccation, cold, heat, oxidation, ultraviolet radiation, and years of anoxia at ambient temperature when fully hydrated. Cysts have adapted to stress in several ways; they are surrounded by a rigid cell wall impermeable to most chemical compounds and which functions as a shield against ultraviolet radiation. Artemia cysts contain large amounts of trehalose, a non-reducing sugar thought to preserve membranes and proteins during desiccation by replacing water molecules and/or contributing to vitrification. Late embryogenesis abundant proteins similar to those in seeds and other anhydrobiotic organisms are found in cysts, and they safeguard cell organelles and proteins during desiccation. Artemia cysts contain abundant amounts of p26, a small heat shock protein, and artemin, a ferritin homologue, both ATP-independent molecular chaperones important in stress tolerance. The evidence provided in this review supports the conclusion that it is the interplay of these protective elements that make Artemia one of the most stress tolerant of all metazoan organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson E, Lockhead JH, Lockhead MS, Huebner E (1970) The origin and structure of the tertiary envelope in thick-shelled eggs of the brine shrimp, Artemia. J Ultrastruct Res 32:497–525

    Article  CAS  PubMed  Google Scholar 

  • Boswell LC, Hand SC (2014) Intracellular localization of group 3 LEA proteins in embryos of Artemia franciscana. Tiss Cell 46:514–519

    Article  CAS  Google Scholar 

  • Boswell LC, Moore DS, Hand SC (2014) Quantitation of cellular protein expression and molecular features of group 3 LEA proteins from embryos of Artemia franciscana. Cell Stress Chaperones 19:329–341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Browne J, Tunnacliffe A, Burnell A (2002) Plant desiccation gene found in a nematode. Nature 2002:38

    Article  Google Scholar 

  • Busa WB, Crowe JH (1983) Intracellular pH regulates transitions between dormancy and development of brine shrimp (Artemia salina) embryos. Science 221:366–368

    Article  CAS  PubMed  Google Scholar 

  • Campos F, Cuevas-Velazquez C, Fares MA, Reyes JL, Covarrubias AA (2013) Group 1 LEA proteins, an ancestral plant protein group, are also present in other eukaryotes, and in the archeae and bacteria domains. Mol Genet Genomics 288:503–517

    Article  CAS  PubMed  Google Scholar 

  • Chakrabortee S, Tripathi R, Watson M, Schierle GSK, Kurniawan DP, Kaminski CF, Wise MJ, Tunnacliffe A (2011) Intrinsically disordered proteins as molecular shields. Mol Biosyst. doi:10.1039/c1mb05263b

    PubMed  Google Scholar 

  • Chen T, Amons R, Clegg JS, Warner AH, MacRae TH (2003) Molecular characterization of artemin and ferritin from Artemia franciscana. Eur J Biochem 270:137–145

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Villeneuve TS, Garant KA, Amons R, MacRae TH (2007) Functional characterization of artemin, a ferritin homolog synthesized in Artemia embryos during encystment and diapause. FEBS J 274:1093–1101

    Article  CAS  PubMed  Google Scholar 

  • Clegg JS (1962) Free glycerol in dormant cysts of the brine shrimp Artemia salina, and its disappearance during development. Biol Bull 123:295–301

    Article  CAS  Google Scholar 

  • Clegg JS (1964) The control of emergence and metabolism by external osmotic pressure and the role of free glycerol in developing cysts of Artemia salina. J Exp Biol 41:879–892

    CAS  PubMed  Google Scholar 

  • Clegg JS (1965) The origin of trehalose and its significance during the formation of encysted dormant embryos of Artemia salina. Comp Biochem Physiol 14:135–143

    Article  CAS  PubMed  Google Scholar 

  • Clegg JS (1966) Protein synthesis in the absence of cell division during the development of Artemia salina embryos. Nature 212:517–519

    Article  CAS  Google Scholar 

  • Clegg JS (1967) Metabolic studies of cryptobiosis in encysted embryos of Artemia salina. Comp Biochem Physiol 20:801–809

    Article  CAS  Google Scholar 

  • Clegg JS (1974) Interrelationships between water and metabolism in Artemia salina cysts: hydration-dehydration from the liquid and vapour phases. J Exp Biol 61:291–308

    CAS  PubMed  Google Scholar 

  • Clegg JS (1976a) Interrelationships between water and cellular metabolism in Artemia cysts. V. 14CO2 incorporation. J Cell Physiol 89:369–380

    Article  CAS  PubMed  Google Scholar 

  • Clegg JS (1976b) Interrelationships between water and metabolism in Artemia cysts—III. Respiration. Comp Biochem Physiol 53A:89–93

    Article  Google Scholar 

  • Clegg JS (1976c) Interrelationships between water and metabolism in Artemia cysts—II. Carbohydrates. Comp Biochem Physiol 53A:83–87

    Article  Google Scholar 

  • Clegg JS (1977) Interrelationships between water and cellular metabolism in Artemia cysts. VI. RNA and protein synthesis. J Cell Physiol 91:143–154

    Article  CAS  PubMed  Google Scholar 

  • Clegg JS (1978) Interrelationships between water and cellular metabolism in Artemia cysts. VIII. Sorption isotherms and derived thermodynamic quantities. J Cell Physiol 94:123–138

    Article  CAS  PubMed  Google Scholar 

  • Clegg JS (1997) Embryos of Artemia franciscana survive four years of continuous anoxia: the case for complete metabolic rate depression. J Exp Biol 200:467–475

    PubMed  Google Scholar 

  • Clegg JS (2005) Desiccation tolerance in encysted embryos of the animal extremophile, Artemia. Integr Comp Biol 45:715–724

    Article  CAS  PubMed  Google Scholar 

  • Clegg JS, Cavagnaro J (1976) Interrelationships between water and cellular metabolism in Artemia cysts. IV. Adenosine 5′-triphosphate and cyst hydration. J Cell Physiol 88:159–166

    Article  CAS  PubMed  Google Scholar 

  • Clegg JS, Golub AL (1969) Protein synthesis in Artemia salina embryos. II. Resumption of RNA and protein synthesis upon cessation of dormancy in the encysted gastrula. Develop Biol 19:178–200

    Article  CAS  PubMed  Google Scholar 

  • Clegg JS, Jackson SA (1992) Aerobic heat shock activates trehalose synthesis in embryos of Artemia franciscana. FEBS Lett 303:45–47

    Article  CAS  PubMed  Google Scholar 

  • Clegg JS, Jackson SA (1998) The metabolic status of quiescent and diapause embryos of Artemia franciscana (Kellogg). Arch Hydrobiol Spec Issues Advanc Limnol 52:425–439

    Google Scholar 

  • Clegg JS, Trotman CNA (2002) Physiological and biochemical aspects of Artemia biology. In: Abatzopoulos TJ, Beardmore JA, Clegg JS, Sorgeloos P (eds) Artemia, basic and applied biology. Kluwer Academic Publishers, Dordrecht, pp 129–170

    Chapter  Google Scholar 

  • Clegg JS, Jackson SA, Warner AH (1994) Extensive intracellular translocations of a major protein accompany anoxia in embryos of Artemia franciscana. Exp Cell Res 212:77–83

    Article  CAS  PubMed  Google Scholar 

  • Clegg JS, Jackson SA, Liang P, MacRae TH (1995) Nuclear-cytoplasmic translocations of protein p26 during aerobic-anoxic transitions in embryos of Artemia franciscana. Exp Cell Res 219:1–7

    Article  CAS  PubMed  Google Scholar 

  • Clegg JS, Jackson SA, Popov VI (2000) Long-term anoxia in encysted embryos of the crustacean, Artemia franciscana: viability, ultrastructure, and stress proteins. Cell Tiss Res 301:433–446

    Article  CAS  Google Scholar 

  • Close TJ, Lammers PJ (1993) An osmotic stress protein of cyanobacteria is immunologically related to plant dehydrins. Plant Physiol 101:773–779

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crack JA, Mansour M, Sun Y, MacRae TH (2002) Functional analysis of a small heat shock/α-crystallin protein from Artemia franciscana. Oligomerization and thermotolerance. Eur J Biochem 269:933–942

    Article  CAS  PubMed  Google Scholar 

  • Criel G (1980) Morphology of the female genital apparatus of Artemia: a review. In: Persoone G, Sorgeloos P, Roels O, Jaspers E (eds) The brine shrimp Artemia, vol 1. Morphology, genetics, radiobiology, toxicology. Universa Press, Belgium, pp 75–86

    Google Scholar 

  • Criel GRJ, MacRae TH (2002) Artemia morphology and structure. In: Abatzopoulos TJ, Beardmore JA, Clegg JS, Sorgeloos P (eds) Artemia, basic and applied biology. Kluwer Academic Publishers, Dordrecht, pp 1–37

    Chapter  Google Scholar 

  • Crowe JH (2007) Trehalose as a “chemical chaperone”: fact and fantasy. In: Csermely P, Vigh L (eds) Molecular aspects of the stress response: chaperones, membranes and networks. Landes Bioscience and Springer Science + Business Media, Austin/New York, pp 143–158

    Chapter  Google Scholar 

  • Crowe JH, Crowe LM, Jackson SA (1983) Preservation of structural and functional activity in lyophilized sarcoplasmic reticulum. Arch Biochem Biophys 220:477–484

    Article  CAS  PubMed  Google Scholar 

  • Crowe LM, Mouradian R, Crowe JH, Jackson SA, Womersley C (1984) Effects of carbohydrates on membrane stability at low water activities. Biochim Biophys Acta 769:141–150

    Article  CAS  PubMed  Google Scholar 

  • Crowe JH, Crowe L, Carpenter JF, Wistrom CA (1987) Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem J 242:1–10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LA (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599

    Article  CAS  PubMed  Google Scholar 

  • Dai L, Chen D-F, Liu Y-L, Zhao Y, Yang F, Yang J-S, Yang W-J (2011a) Extracellular matrix peptides of Artemia cyst shell participate in protecting encysted embryos from extreme environments. PLoS One 6(6):e20187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dai Z-M, Li R, Dai L, Yang J-S, Chen S, Zeng Q-G, Yang F, Yang W-J (2011b) Determination in oocytes of the reproductive modes for the brine shrimp Artemia parthenogenetica. Biosci Rep 31:17–30

    Article  CAS  PubMed  Google Scholar 

  • Day RM, Gupta JS, MacRae TH (2003) A small heat shock/α-crystallin protein from encysted Artemia embryos suppresses tubulin denaturation. Cell Stress Chaperones 8:183–193

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Chaffoy D, Kondo M (1976) Selective resistance to desiccation of nuclear ribonucleic acid synthesis in isolated nuclei of Artemia salina embryos during pre-emergence development. Biochem J 158:639–642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Chaffoy D, De Maeyer-Criel G, Kondo M (1978) On the permeability and formation of the embryonic cuticle during development in vivo and in vitro of Artemia salina embryos. Differentiation 12:99–109

    Article  Google Scholar 

  • De Graaf J, Amons R, Möller W (1990) The primary structure of artemin from Artemia cysts. Eur J Biochem 193:737–750

    Article  PubMed  Google Scholar 

  • De Herdt E, Slegers H, Kondo M (1979) Identification and characterization of a 19-S complex containing a 27000-Mr protein in Artemia salina. Eur J Biochem 96:423–430

    Article  PubMed  Google Scholar 

  • De Herdt E, De Voeght F, Clauwaert J, Kondo M, Slegers H (1981) A cryptobiosis-specific 19S protein complex of Artemia salina gastrulae. Biochem J 194:9–17

    Article  PubMed Central  PubMed  Google Scholar 

  • Drinkwater LE, Clegg JS (1991) Experimental biology of cyst diapause. In: Browne RA, Sorgeloos P, Trotman CAN (eds) Artemia biology. CRC Press, Inc., Boca Raton, pp 93–117

    Google Scholar 

  • Duan R-B, Zhang L, Chen D-F, Yang F, Yang J-S, Yang W-J (2014) Two p90 ribosomal S6 kinase isoforms are involved in the regulation of mitotic and meiotic arrest in Artemia. J Biol Chem 289:16006–16015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dure L III, Greenway SC, Galau GA (1981) Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20:4162–4168

    Article  CAS  PubMed  Google Scholar 

  • Erkut C, Penkov S, Khesbak H, Vorkel D, Verbavatz J-M, Fahmy K, Kurzchalia TV (2011) Trehalose renders the dauer larva of Caenorhabditis elegans resistant to extreme desiccation. Curr Biol 21:1331–1336

    Article  CAS  PubMed  Google Scholar 

  • Erkut C, Vasilj A, Boland S, Habermann B, Shevchenko A, Kurzchalia TV (2013) Molecular strategies of the Caenorhabditis elegans dauer larva to survive extreme desiccation. PLoS One 8(12):e82473

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gal TZ, Glazer I, Koltai H (2004) An LEA group 3 family member is involved in survival of C. elegans during exposure to stress. FEBS Lett 577:21–26

    Article  CAS  PubMed  Google Scholar 

  • Golub A, Clegg JS (1968) Protein synthesis in Artemia salina embryos. I. Studies on polyribosomes. Develop Biol 17:644–656

    Article  CAS  PubMed  Google Scholar 

  • Goyal K, Tisi L, Basran A, Browne J, Burnell A, Zurdo J, Tunnacliffe A (2003) Transition from natively unfolded to folded state induced by desiccation in an anhydrobiotic nematode protein. J Biol Chem 278:12977–12984

    Article  CAS  PubMed  Google Scholar 

  • Goyal K, Pinelli C, Maslen SL, Rastogi RK, Stephens E, Tunnacliffe A (2005a) Dehydration-regulated processing of late embryogenesis abundant protein in a desiccation-tolerant nematode. FEBS Lett 579:4093–4098

    Article  CAS  PubMed  Google Scholar 

  • Goyal K, Walton LJ, Tunnacliffe A (2005b) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grelet J, Benamar A, Teyssier E, Avelange-Macherel M-H, Grunwald D, Macherel D (2005) Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying. Plant Physiol 137157-167

  • Grosfeld H, Littauer UZ (1976) The translation in vitro of mRNA from developing cysts of Artemia salina. Eur J Biochem 70:589–599

    Article  CAS  PubMed  Google Scholar 

  • Hand SC, Carpenter JF (1986) pH-induced metabolic transitions in Artemia embryos mediated by a novel hysteretic trehalase. Science 232:1535–1537

    Article  CAS  PubMed  Google Scholar 

  • Hand SC, Jones D, Menze MA, Witt TL (2007) Life without water: expression of plant LEA genes by an anhydrobiotic arthropod. J Exp Zool 307A:62–66

    Article  CAS  Google Scholar 

  • Hand SC, Menze MA, Toner M, Boswell L, Moore D (2011) LEA proteins during water stress: not just for plants anymore. Annu Rev Physiol 73:115–134

    Article  CAS  PubMed  Google Scholar 

  • Haslbeck M, Vierling E (2015) A first line of stress defense: small heat shock proteins and their function in protein homeostasis. J Mol Biol 427:1537–1548

    Article  CAS  PubMed  Google Scholar 

  • Hatanaka R, Hagiwara-Komoda Y, Furuki T, Kanamori Y, Fujita M, Cornette R, Sakurai M, Okuda T, Kikawada T (2013) An abundant LEA protein in the anhydrobiotic midge, PvLEA4, acts as a molecular shield by limiting growth of aggregating protein particles. Insect Biochem Mol Biol 43:1055–1067

    Article  CAS  PubMed  Google Scholar 

  • Hengherr S, Heyer AG, Köhler H-R, Schill RO (2008) Trehalose and anhydrobiosis in tardigrades—evidence for divergence in responses to dehydration. FEBS J 275:281–288

    Article  CAS  PubMed  Google Scholar 

  • Hengherr S, Schill RO, Clegg JS (2011) Mechanisms associated with cellular desiccation tolerance of Artemia encysted embryos from locations around the world. Comp Biochem Physiol Part A 160:137–142

    Article  CAS  Google Scholar 

  • Hofmann GE, Hand SC (1990) Subcellular differentiation arrested in Artemia embryos under anoxia: evidence supporting a regulatory role for pH. J Exp Zool 253:287–302

    Article  Google Scholar 

  • Hu Y, Bojikova-Fournier S, King AM, MacRae TH (2011) The structural stability and chaperone activity of artemin, a ferritin homologue from diapause-destined Artemia embryos, depend on different cysteine residues. Cell Stress Chaperones 16:133–141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hundertmark M, Popova AV, Rausch S, Seckler R, Hincha DK (2012) Influence of drying on the secondary structure of intrinsically disordered and globular proteins. Biochem Biophys Res Commum 417:122–128

    Article  CAS  Google Scholar 

  • Jackson SA, Clegg JS (1996) Ontogeny of low molecular weight stress protein p26 during early development of the brine shrimp, Artemia franciscana. Develop Growth Differ 38:153–160

    Article  CAS  Google Scholar 

  • Jaspard E, Macherel D, Hunault G (2012) Computational and statistical analyses of amino acid usage and physico-chemical properties of the twelve late embryogenesis abundant protein classes. PLoS One 7(5):e36968

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karagöz GE, Rüdiger SGD (2015) Hsp90 interaction with clients. Trend Biochem Sci 40:117–125

    Article  PubMed  CAS  Google Scholar 

  • Kikawada T, Nakahara Y, Kanamori Y, K-i I, Watanabe M, McGee B, Tunnacliffe A, Okuda T (2006) Dehydration-induced expression of LEA proteins in an anhydrobiotic chironomid. Biochem Biophys Res Commun 348:56–61

    Article  CAS  PubMed  Google Scholar 

  • King AM, MacRae TH (2012) The small heat shock protein p26 aids development of encysting Artemia embryos, prevents spontaneous diapause termination and protects against stress. PLoS One 7(8):e43723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • King AM, MacRae TH (2015) Insect heat shock proteins during stress and diapause. Annu Rev Entomol 60:59–75

    Article  CAS  PubMed  Google Scholar 

  • King AM, Toxopeus J, MacRae TH (2013) Functional differentiation of small heat shock proteins in diapause-destined Artemia embryos. FEBS J 280:4761–4772

    Article  CAS  PubMed  Google Scholar 

  • King AM, Toxopeus J, MacRae TH (2014) Artemin, a diapause-specific chaperone, contributes to the stress tolerance of Artemia franciscana cysts and influences their release from females. J Exp Biol 217:1719–1724

    Article  CAS  PubMed  Google Scholar 

  • Li S, Chakraborty N, Borcar A, Menze MA, Toner M, Hand SC (2012) Late embryogenesis abundant proteins protect human hepatoma cells during acute desiccation. Proc Natl Acad Sci U S A 109:20859–20864

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liang P, MacRae TH (1999) The synthesis of a small heat shock/α-crystallin protein in Artemia and its relationship to stress tolerance during development. Develop Biol 207:445–456

    Article  CAS  PubMed  Google Scholar 

  • Liang P, Amons R, MacRae TH, Clegg JS (1997a) Purification, structure and in vitro molecular-chaperone activity of Artemia p26, a small heat shock/α-crystallin protein. Eur J Biochem 243:225–232

    Article  CAS  PubMed  Google Scholar 

  • Liang P, Amons R, Clegg JS, MacRae TH (1997b) Molecular characterization of a small heat shock/α-crystallin protein in encysted Artemia embryos. J Biol Chem 272:19051–19058

    Article  CAS  PubMed  Google Scholar 

  • Liu Y-L, Zhao Y, Dai Z-M, Chen H-M, Yang W-J (2009) Formation of diapause cyst shell in brine shrimp, Artemia parthenogenetica, and its resistance role in environmental stresses. J Biol Chem 284:16931–16938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma W-M, Li H-W, Dai Z-M, Yang J-S, Yang F, Yang W-J (2013) Chitin-binding proteins of Artemia diapause cysts participate in formation of the embryonic cuticle layer of cyst shells. Biochem J 449:285–294

    Article  CAS  PubMed  Google Scholar 

  • MacRae TH (2003) Molecular chaperones, stress resistance and development in Artemia franciscana. Sem Cell Develop Biol 14:251–258

    Article  CAS  Google Scholar 

  • MacRae TH (2010) Gene expression, metabolic regulation and stress tolerance during diapause. Cell Mol Life Sci 67:2405–2424

    Article  CAS  PubMed  Google Scholar 

  • Marunde MR, Samarajeewa DA, Anderson J, Li S, Hand SC, Menze MA (2013) Improved tolerance to salt and water stress in Drosophila melanogaster cells conferred by late embryogenesis abundant protein. J Insect Physiol 59:377–386

    Article  CAS  PubMed  Google Scholar 

  • Mayer MP (2013) Hsp70 chaperone dynamics and molecular mechanism. Trend Biochem Sci 38:660–676

    Article  CAS  Google Scholar 

  • Menze MA, Boswell L, Toner M, Hand SC (2009) Occurrence of mitochondria-targeted late embryogenesis abundant (LEA) gene in animals increases organelle resistance to water stress. J Biol Chem 284:10714–10719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meuti ME, Stone M, Ikeno T, Denlinger DL (2015) Functional circadian clock genes are essential for the overwintering diapause of the Northern house mosquito, Culex pipiens. J Exp Biol 218:412–422

    Article  PubMed  Google Scholar 

  • Miller D, McLennan AG (1988a) The heat shock response of the cryptobiotic brine shrimp Artemia—1. A comparison of the thermotolerance of cysts and larvae. J Therm Biol 13:119–123

    Article  Google Scholar 

  • Miller D, McLennan AG (1988b) The heat shock response of the cryptobiotic brine shrimp Artemia—II. Heat shock proteins. J Therm Biol 13:119–123

    Article  Google Scholar 

  • Morano KA (2014) Anhydrobiosis: drying out with sugar. Curr Biol 24:R1121–R1123

  • Morris JE (1968) Dehydrated cysts of Artemia salina prepared for electron microscopy by totally anhydrous techniques. J Ultrastruct Res 25:64–72

    Article  CAS  PubMed  Google Scholar 

  • Morris JE (1971) Hydration, its reversibility, and the beginning of development in the brine shrimp, Artemia salina. Comp Biochem Physiol 39A:843–857

    Article  Google Scholar 

  • Morris JE, Afzelius BA (1967) The structure of the shell and outer membranes in encysted Artemia salina embryos during cryptobiosis and development. J Ultrastruct Res 20:244–259

    Article  CAS  PubMed  Google Scholar 

  • Nambu Z, Nambu F, Tanaka S (1997) Purification and characterization of trehalase from Artemia embryos and larvae. Zoolog Sci 14:419–427

    Article  CAS  Google Scholar 

  • Nambu Z, Tanaka S, Nambu F (2004) Influence of photoperiod and temperature on reproductive mode in the brine shrimp, Artemia franciscana. J Exp Zool 301A:542–546

    Article  Google Scholar 

  • Qiu Z, MacRae TH (2008a) ArHsp22, a developmentally regulated small heat shock protein produced in diapause-destined Artemia embryos, is stress inducible in adults. FEBS J 275:3556–3566

    Article  CAS  PubMed  Google Scholar 

  • Qiu Z, MacRae TH (2008b) ArHsp21, a developmentally regulated small heat-shock protein synthesized in diapausing embryos of Artemia franciscana. Biochem J 411:605–611

    Article  CAS  PubMed  Google Scholar 

  • Qiu Z, Bossier P, Wang X, Bojikova-Fournier S, MacRae TH (2006) Diversity, structure, and expression of the gene for p26, a small heat shock protein from Artemia. Genomics 88:230–240

    Article  CAS  PubMed  Google Scholar 

  • Qiu Z, Tsoi SCM, MacRae TH (2007) Gene expression in diapause-destined embryos of the crustacean, Artemia franciscana. Mech Develop 124:856–867

    Article  CAS  Google Scholar 

  • Rasti B, Shahangian SS, Sajedi RH, Taghdir M, Hasannia S, Ranjbar B (2009) Sequence and structural analysis of artemin based on ferritin: a comparative study. Biochim Bipphys Acta 1794:1407–1413

    Article  CAS  Google Scholar 

  • Ratnakumar S, Tunnacliffe A (2006) Intracellular trehalose in neither necessary nor sufficient for desiccation tolerance in yeast. FEMS Yeast Res 6:902–913

    Article  CAS  PubMed  Google Scholar 

  • Robbins HM, Van Stappen G, Sorgeloos P, Sung YY, MacRae TH, Bossier P (2010) Diapause termination and development of encysted Artemia embryos: roles for nitric oxide and hydrogen peroxide. J Exp Biol 213:1464–1470

    Article  CAS  PubMed  Google Scholar 

  • Rosowski JR, Belk D, Gouthro MA, Lee KW (1997) Ultrastructure of the cyst shell and underlying membranes of the brine shrimp Artemia franciscana Kellogg (Anostraca) during postencystic development, emergence, and hatching. J Shellfish Res 16:233–249

    Google Scholar 

  • Shahangian SS, Rasti B, Sajedi RH, Khodarahmi R, Taghdir M, Ranjbar B (2011) Artemin as an efficient molecular chaperone. Protein J 30:549–557

    Article  CAS  PubMed  Google Scholar 

  • Sharon MA, Kozarova A, Clegg JS, Vacratsis PO, Warner AH (2009) Characterization of a group 1 late embryogenesis abundant protein in encysted embryos of the brine shrimp Artemia franciscana. Biochem Cell Biol 87:415–430

    Article  CAS  PubMed  Google Scholar 

  • Singer MA, Lindquist S (1998a) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1:639–648

    Article  CAS  PubMed  Google Scholar 

  • Singer MA, Lindquist S (1998b) Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechol 1:460–468

    Article  Google Scholar 

  • Slobin LI (1980) Eukaryotic elongation factor T and artemin: two antigenically related proteins which reflect the dormant state of Artemia cysts. In: Persoone G, Sorgeloos P, Roels O, Jaspers E (eds) The brine shrimp Artemia, vol. 2, physiology, biochemistry, molecular biology. Universa Press, Wetteren, pp 557–573

    Google Scholar 

  • Sugumar V, Munuswamy N (2006) Ultrastructure of cyst shell and underlying membranes of three strains of the brine shrimp Artemia (Branchiopoda: Anostraca) from south India. Microscopy Res Technique 69:957–963

    Article  CAS  Google Scholar 

  • Sun Y, MacRae TH (2005) Characterization of novel sequence motifs within N- and C-terminal extensions of p26, a small heat shock protein from Artemia franciscana. FEBS J 272:5230–5243

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Mansour M, Crack JA, Gass GL, MacRae TH (2004) Oligomerization, chaperone activity, and nuclear localization of p26, a small heat shock protein from Artemia franciscana. J Biol Chem 279:39999–40006

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Bojikova-Fournier S, MacRae TH (2006) Structural and functional roles for β-strand 7 in the α-crystallin domain of p26, a polydisperse small heat shock protein from Artemia franciscana. FEBS J 273:1020–1034

    Article  CAS  PubMed  Google Scholar 

  • Tanguay JA, Reyes RC, Clegg JS (2004) Habitat diversity and adaptation to environmental stress in encysted embryos of the crustacean Artemia. J Biosci 29:489–501

    Article  PubMed  Google Scholar 

  • Tapia H, Koshland D (2014) Trehalose is a versatile and long-lived chaperone for desiccation tolerance. Curr Biol 24:2758–2766

    Article  CAS  PubMed  Google Scholar 

  • Toxopeus J, Warner AH, MacRae TH (2014) Group 1 LEA proteins contribute to the desiccation and freeze tolerance of Artemia franciscana embryos during diapause. Cell Stress Chaperones 19:939–948

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tunnacliffe A, Lapinski J, McGee B (2005) A putative LEA protein, but no trehalose, is present in anhydrobiotic bdelloid rotifers. Hydrobiologia 546:315–321

    Article  CAS  Google Scholar 

  • Villeneuve TS, Ma X, Sun Y, Oulton MM, Oliver AE, MacRae TH (2006) Inhibition of apoptosis by p26: implications for small heat shock protein function during Artemia development. Cell Stress Chaperones 11:71–80

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Warner AH, Brunet RT, MacRae TH, Clegg JS (2004) Artemin is an RNA-binding protein with high thermal stability and potential RNA chaperone activity. Arch Biochem Biophys 424:189–200

    Article  CAS  PubMed  Google Scholar 

  • Warner AH, Miroshnychenko O, Kozarova A, Vacratsis PO, MacRae TH, Kim J, Clegg JS (2010) Evidence for multiple group 1 late embryogenesis abundant proteins in encysted embryos of Artemia and their organelles. J Biochem 148:581–592

    Article  CAS  PubMed  Google Scholar 

  • Willsie JK, Clegg JS (2001) Nuclear p26, a small heat shock/α-crystallin protein, and its relationship to stress resistance in Artemia franciscana embryos. J Exp Biol 204:2339–2350

    CAS  PubMed  Google Scholar 

  • Willsie JK, Clegg JS (2002) Small heat shock protein p26 associates with nuclear lamins and Hsp70 in nuclei and nuclear matrix fractions from stressed cells. J Cell Biochem 84:601–614

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, MacRae TH (2010) Truncation attenuates molecular chaperoning and apoptosis inhibition by p26, a small heat shock protein from Artemia franciscana. Biochem Cell Biol 88:937–946

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Zhang H, Sun J, Liu F, Ge X, Chen W-H, Yu J, Wang W (2011) Diverse LEA (late embryogenesis abundant) and LEA-like genes and their responses to hypersaline stress in post-diapause embryonic development of Artemia franciscana. Comp Biochem Physiol Part B 160:32–39

    Article  CAS  Google Scholar 

  • Yang F, Chen S, Dai Z-M, Chen D-F, Duan R-B, Wang H-L, Jia S-N, Yang W-J (2013) Regulation of trehalase expression inhibits apoptosis in diapause cysts of Artemia. Biochem J 456:185–194

    Article  CAS  PubMed  Google Scholar 

  • Yébenes H, Mesa P, Muñoz IG, Montoya G, Valpuesta JM (2011) Chaperonins: two rings for folding. Trend Biochem Sci 36:424–432

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported financially by a Natural Sciences and Engineering Research Council of Canada Discovery Grant to T. H. M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas H. MacRae.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacRae, T.H. Stress tolerance during diapause and quiescence of the brine shrimp, Artemia . Cell Stress and Chaperones 21, 9–18 (2016). https://doi.org/10.1007/s12192-015-0635-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-015-0635-7

Keywords

Navigation