Skip to main content
Log in

Gene expression, metabolic regulation and stress tolerance during diapause

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Diapause entails molecular, physiological and morphological remodeling of living animals, culminating in a dormant state characterized by enhanced stress tolerance. Molecular mechanisms driving diapause resemble those responsible for biochemical processes in proliferating cells and include transcriptional, post-transcriptional and post-translational processes. The results are directed gene expression, differential mRNA and protein accumulation and protein modifications, including those that occur in response to changes in cellular redox potential. Biochemical pathways switch, metabolic products change and energy production is adjusted. Changes to biosynthetic activities result for example in the synthesis of molecular chaperones, late embryogenesis abundant (LEA) proteins and protective coverings, all contributing to stress tolerance. The purpose of this review is to consider regulatory and mechanistic strategies that are potentially key to metabolic control and stress tolerance during diapause, while remembering that organisms undergoing diapause are as diverse as the processes itself. Some of the parameters described have well-established roles in diapause, whereas the evidence for others is cursory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cohen PA, Knoll AH, Kodner RB (2009) Large spinose microfossils in Ediacaran rocks as resting stages of early animals. Proc Natl Acad Sci USA 106:6519–6524

    CAS  PubMed  Google Scholar 

  2. Hairston NG Jr (1998) Time travelers: what’s timely in diapause research? Arch Hydrobiol Spec Issues Adv Limnol 52:1–15

    Google Scholar 

  3. Denlinger DL (2002) Regulation of diapause. Annu Rev Entomol 47:93–122

    CAS  PubMed  Google Scholar 

  4. Lopes FL, Desmarais JA, Murphy BD (2004) Embryonic diapause and its regulation. Reproduction 128:669–678

    CAS  PubMed  Google Scholar 

  5. MacRae TH (2005) Diapause: diverse states of developmental and metabolic arrest. J Biol Res 3:3–14

    CAS  Google Scholar 

  6. Koštál V (2006) Eco-physiological phases of insect diapause. J Insect Physiol 52:113–127

    PubMed  Google Scholar 

  7. Hahn DA, Denlinger DL (2007) Meeting the energetic demands of insect diapause: nutrient storage and utilization. J Insect Physiol 53:760–773

    CAS  PubMed  Google Scholar 

  8. Fielenbach N, Antebi A (2008) C. elegans dauer formation and the molecular basis of plasticity. Genes Dev 22:2149–2165

    CAS  PubMed  Google Scholar 

  9. Brendonck L, De Meester L (2003) Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia 491:65–84

    Google Scholar 

  10. Burnell AM, Houthoofd K, O’Hanlon K, Vanfleteren JR (2005) Alternate metabolism during the dauer stage of the nematode Caenorhabditis elegans. Exp Gerentol 40:850–856

    CAS  Google Scholar 

  11. Qiu Z, Tsoi SCM, MacRae TH (2007) Gene expression in diapause-destined embryos of the crustacean, Artemia franciscana. Mech Dev 124:856–867

    CAS  PubMed  Google Scholar 

  12. Wolschin F, Gadau J (2009) Deciphering proteomic signatures of early diapause in Nasonia. PLoS ONE 4(7):e6394

    PubMed  Google Scholar 

  13. Baker DA, Russell S (2009) Gene expression during Drosophila melanogaster egg development before and after reproductive diapause. BMC Genomics 10:242. doi:10.1186/1471-2164-10-242

  14. Denekamp NY, Thorne MAS, Clark MS, Kube M, Reinhardt R, Lubzens E (2009) Discovering genes associated with dormancy in the monogonont rotifer Brachionus plicatilis. BMC Genomics 10:108. doi:10.1186/1471-2164-10-108

    PubMed  Google Scholar 

  15. Baumeister R, Schaffitzel E, Hertweck M (2006) Endocrine signaling in Caenorhabditis elegans controls stress response and longevity. J Endocrinol 190:191–202

    CAS  PubMed  Google Scholar 

  16. Allen MJ (2007) What makes a fly enter diapause? Fly 1:307–310

    PubMed  Google Scholar 

  17. Emerson KJ, Bradshaw WE, Holzapfel CM (2009) Complications of complexity: integrating environmental, genetic and hormonal control of insect diapause. Trends Genet 25:217–225

    CAS  PubMed  Google Scholar 

  18. Zhang A, Jiang M, Zhang J, Ding H, Xu S, Hu X, Tan M (2007) Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol 175:36–50

    CAS  PubMed  Google Scholar 

  19. Forman HJ, Fukuto JM, Miller T, Zhang H, Rinna A, Levy S (2008) The chemistry of cell signaling by reactive oxygen and nitrogen species and 4-hydroxynonenal. Arch Biochem Biophys 477:183–195

    CAS  PubMed  Google Scholar 

  20. Covarrubias L, Hernández-García D, Schnabel D, Salas-Vidal E, Castro-Obregón S (2008) Function of reactive oxygen species during animal development: passive or active? Dev Biol 320:1–11

    CAS  PubMed  Google Scholar 

  21. Oracz K, Bouteau HE-M, Farrant JM, Cooper K, Belghazi M, Job C, Job D, Corbineau F, Bailly C (2007) ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J 50:452–465

    CAS  PubMed  Google Scholar 

  22. Bailly C, El-Maarouf-Bouteau H, Corbineau F (2008) From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. C R Biol 331:806–814

    CAS  PubMed  Google Scholar 

  23. MacRae TH (2003) Molecular chaperones, stress resistance and development in Artemia franciscana. Semin Cell Dev Biol 14:251–258

    CAS  PubMed  Google Scholar 

  24. Storey KB, Storey JM (2004) Metabolic rate depression in animals: transcriptional and translational controls. Biol Rev 79:207–233

    PubMed  Google Scholar 

  25. Storey KB, Storey JM (2007) Tribute to P.L. Lutz: putting life on “pause”—molecular regulation of hypometabolism. J Exp Biol 210:1700–1714

    CAS  PubMed  Google Scholar 

  26. Podrabsky JE, Hand SC (2000) Depression of protein synthesis during diapause in embryos of the annual killifish Austrofundulus limnaeus. Physiol Biochem Zool 73:799–808

    CAS  PubMed  Google Scholar 

  27. Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10:307–318

    PubMed  Google Scholar 

  28. Podrabsky JE, Carpenter JF, Hand SC (2001) Survival of water stress in annual fish embryos: dehydration avoidance and egg envelope amyloid fibers. Am J Physiol Regul Integr Comp Physiol 280:R123–R131

    CAS  PubMed  Google Scholar 

  29. Liu Y-L, Zhao Y, Dai Z-M, Chen H-M, Yang W-J (2009) Formation of diapause cyst shell in brine shrimp, Artemia parthenogenetica, and its resistance role in environmental stresses. J Biol Chem 284:16931–16938

    CAS  PubMed  Google Scholar 

  30. Villeneuve TS, Ma X, Sun Y, Oulton MM, Oliver AE, MacRae TH (2006) Inhibition of apoptosis by p26: implications for small heat shock protein function during Artemia development. Cell Stress Chaperones 11:71–80

    CAS  PubMed  Google Scholar 

  31. Menze MA, Hand SC (2007) Caspase activity during cell stasis: avoidance of apoptosis in an invertebrate extremophile. Artemia franciscana. Am J Physiol Regul Integr Comp Physiol 292:R2039–R2047

    CAS  PubMed  Google Scholar 

  32. Bartels D (2001) Molecular mechanisms of desiccation tolerance in plants. In: Storey KB (ed) Molecular mechanisms of metabolic arrest: life in limbo. BIOS Scientific Publishers Ltd., Oxford, pp 187–196

    Google Scholar 

  33. Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water loss. Biochem J 388:151–157

    CAS  PubMed  Google Scholar 

  34. Berjak P (2006) Unifying perspectives of some mechanisms basic to desiccation tolerance across life forms. Seed Sci Res 16:1–15

    CAS  Google Scholar 

  35. Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94:791–812

    CAS  PubMed  Google Scholar 

  36. Menze MA, Boswell L, Toner M, Hand SC (2009) Occurrence of mitochondria-targeted late embryogenesis abundant (LEA) gene in animals increases organelle resistance to water stress. J Biol Chem 284:10714–10719

    CAS  PubMed  Google Scholar 

  37. Sharon MA, Kozarova A, Clegg JS, Vacratsis PO, Warner AH (2009) Characterization of a group 1 late embryogenesis abundant protein in encysted embryos of the brine shrimp Artemia franciscana. Biochem Cell Biol 87:415–430

    CAS  PubMed  Google Scholar 

  38. Tarrant AM, Baumgartner MF, Verslycke T, Johnson CL (2008) Differential gene expression in diapausing and active Calanus finmarchicus (Copepoda). Mar Ecol Prog Ser 355:193–207

    CAS  Google Scholar 

  39. Zhou Q, Wu C, Dong B, Liu F, Xiang J (2008) The encysted dormant embryo proteome of Artemia sinica. Mar Biotechnol 10:438–446

    CAS  PubMed  Google Scholar 

  40. Guidetti R, Boschini D, Rebecchi L, Bertolani R (2006) Encystment processes and the “Matrioshka-like stage” in a moss-dwelling and in a limnic species of eutardigrades (Tardigrada). Hydrobiologia 558:9–21

    Google Scholar 

  41. Guidetti R, Boschini D, Altiero T, Bertolani R, Rebecchi L (2008) Diapause in tardigrades: a study of factors involved in encystment. J Exp Biol 211:2296–2302

    PubMed  Google Scholar 

  42. Förster F, Liang C, Shkumatov A, Beisser D, Engelmann JC, Schnölzer M, Frohme M, Müller T, Schill RO, Dandekar T (2009) Tardigrade workbench: comparing stress-related proteins, sequence-similar and functional protein clusters as well as RNA elements in tardigrades. BMC Genomics 10:469. doi:10.1186/1471-2164-10-469

    PubMed  Google Scholar 

  43. Podrabsky JE, Lopez JP, Fan TWM, Higashi R, Somero GN (2007) Extreme anoxia tolerance in embryos of the annual killifish Austrofundulus limnaeus: insights from a metabolomics analysis. J Exp Biol 210:2253–2266

    CAS  PubMed  Google Scholar 

  44. Podrabsky JE, Somero GN (2007) An inducible 70 kDa-class heat shock protein is constitutively expressed during early development and diapause in the annual killifish Austrofundulus limnaeus. Cell Stress Chaperones 12:199–204

    CAS  PubMed  Google Scholar 

  45. Miller DL, Roth MB (2009) C. elegans are protected from lethal hypoxia by an embryonic diapause. Curr Biol 19:1233–1237

    CAS  PubMed  Google Scholar 

  46. Drinkwater LE, Clegg JS (1991) Experimental biology of cyst diapause. In: Browne RA, Sorgeloos P, Trotman CAN (eds) Artemia biology. CRC Press, Inc., Boca Raton, pp 93–117

    Google Scholar 

  47. Clegg JS, Drinkwater LE, Sorgeloos P (1996) The metabolic status of diapause embryos of Artemia franciscana (SFB). Physiol Zool 69:49–66

    Google Scholar 

  48. Podrabsky JE, Hand SC (1999) The bioenergetics of embryonic diapause in an annual killifish, Austrofundulus limnaeus. J Exp Biol 202:2567–2580

    CAS  PubMed  Google Scholar 

  49. Chen T, Reith ME, Ross NW, MacRae TH (2003) Expressed sequence tag (EST)-based characterization of gene regulation in Artemia larvae. Invert Reprod Dev 44:33–44

    CAS  Google Scholar 

  50. Li Y-P, Xia R-X, Wang H, Li X-S, Liu Y-Q, Wei Z-J, Lu C, Xiang Z-H (2009) Construction of a full-length cDNA library from Chinese oak silkworm pupa and identification of a KK-42-binding protein gene in relation to pupa-diapause termination. Int J Biol Sci 5:451–457

    CAS  PubMed  Google Scholar 

  51. Hahn DA, Ragland GJ, Shoemaker DW, Denlinger DL (2009) Gene discovery using massively parallel pyrosequencing to develop ESTs for the flesh fly Sarcophaga crassipalpis. BMC Genomics 10:234. doi:10.1186/1471-2164-10-234

    PubMed  Google Scholar 

  52. Xu X, Song S, Wang Q, Qin F, Liu K, Zhang X, Hu S, Zhao Y (2009) Analysis and comparison of a set of expressed sequence tags of the parthenogenetic water flea Daphnia carinata. Mol Genet Genomics 282:197–203

    CAS  PubMed  Google Scholar 

  53. Li AQ, Popova-Butler A, Dean DH, Denlinger DL (2007) Proteomics of the flesh fly brain reveals an abundance of upregulated heat shock proteins during pupal diapause. J Insect Physiol 53:385–391

    CAS  PubMed  Google Scholar 

  54. Robich RM, Rinehart JP, Kitchen LJ, Denlinger DL (2007) Diapause-specific gene expression in the northern house mosquito, Culex pipiens L., identified by suppressive subtractive hybridization. J Insect Physiol 53:235–2435

    CAS  PubMed  Google Scholar 

  55. Hamatani T, Daikoku T, Wang H, Matsumoto H, Carter MG, Ko MSH, Dey SK (2004) Global gene expression analysis identifies molecular pathways distinguishing blastocyst dormancy and activation. Proc Natl Acad Sci USA 101:10326–10331

    CAS  PubMed  Google Scholar 

  56. Hondo E, Stewart CL (2004) Profiling gene expression in growth-arrested mouse embryos in diapause. Genome Biol 6:202. http://genomebiology.com/2004/6/1/202

    Google Scholar 

  57. McElwee JJ, Schuster E, Blanc E, Thomas JH, Gems D (2004) Shared transcriptional signature in Caenorhabditis elegans dauer larvae and long-lived daf-2 mutants implicates detoxification system in longevity assurance. J Biol Chem 279:44533–44543

    CAS  PubMed  Google Scholar 

  58. Flannagan RD, Tammariello SP, Joplin KH, Cikra-Ireland RA, Yocum GD, Denlinger DL (1998) Diapause-specific gene expression in pupae of the flesh fly Sarcophaga crassipalpis. Proc Natl Acad Sci USA 95:5616–5620

    CAS  PubMed  Google Scholar 

  59. Rinehart JP, Yocum GD, Denlinger DL (2000) Developmental upregulation of inducible hsp70 transcripts, but not the cognate form, during pupal diapause in the flesh fly, Sarcophaga crassipalpis. Insect Biochem Mol Biol 30:515–521

    CAS  PubMed  Google Scholar 

  60. Rinehart JP, Li A, Yocum GD, Robich RM, Hayward SAL, Denlinger DL (2007) Up-regulation of heat shock proteins is essential for cold survival during insect diapause. Proc Natl Acad Sci USA 104:11130–11137

    CAS  PubMed  Google Scholar 

  61. Kim M, Robich RM, Rinehart JP, Denlinger DL (2006) Upregulation of two actin genes and redistribution of actin during diapause and cold stress in the northern house mosquito, Culex pipiens. J Insect Physiol 52:1226–1233

    CAS  PubMed  Google Scholar 

  62. Hand SC, Hardewig I (1996) Downregulation of cellular metabolism during environmental stress: mechanisms and implications. Annu Rev Physiol 58:539–563

    CAS  PubMed  Google Scholar 

  63. Hand SC (1998) Quiescence in Artemia franciscana embryos: reversible arrest of metabolism and gene expression at low oxygen levels. J Exp Biol 201:1233–1242

    CAS  PubMed  Google Scholar 

  64. Menze MA, Clavenna MJ, Hand SC (2005) Depression of cell metabolism and proliferation by membrane-permeable and-impermeable modulators: role for AMP-to-ATP ratio. Am J Physiol Regul Integr Comp Physiol 288:R501–R510

    CAS  PubMed  Google Scholar 

  65. Shackelford DB, Shaw RJ (2009) The LBK1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 9:563–575

    CAS  PubMed  Google Scholar 

  66. Hardie DG (2005) New roles for the LKB1 → AMPK pathway. Curr Opin Cell Biol 17:167–173

    CAS  PubMed  Google Scholar 

  67. Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8:774–785

    CAS  PubMed  Google Scholar 

  68. Hardie DG (2008) AMPK: a key regulator of energy balance in the single cell and the whole organism. Int J Obes 32:S7–S12

    CAS  Google Scholar 

  69. McBride A, Hardie DG (2009) AMP-activated protein kinase–a sensor of glycogen as well as AMP and ADP? Acta Physiol 196:99–113

    CAS  Google Scholar 

  70. Inoki K, Zhu T, Guan K-L (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590

    CAS  PubMed  Google Scholar 

  71. Horman S, Browne GJ, Krause U, Patel JV, Vertommen D, Bertrand L, Lavoinne A, Hue L, Proud CG, Rider MH (2002) Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Curr Biol 12:1419–1423

    CAS  PubMed  Google Scholar 

  72. Yang W, Hong YH, Shen X-Q, Frankowski C, Camp HS, Leff T (2001) Regulation of transcription by AMP-activated protein kinase. Phosphorylation of p300 blocks its interaction with nuclear receptors. J Biol Chem 276:38341–38344

    CAS  PubMed  Google Scholar 

  73. Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, Cantley LC (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 101:3329–3335

    CAS  PubMed  Google Scholar 

  74. Reynolds JA, Hand SC (2004) Differences in isolated mitochondria are insufficient to account for respiratory depression during diapause in Artemia franciscana embryos. Physiol Biochem Zool 77:366–377

    CAS  PubMed  Google Scholar 

  75. Zhu X-J, Feng C-Z, Dai Z-M, Zhang R-C, Yang W-J (2007) AMPK alpha subunit gene characterization in Artemia and expression during development and in response to stress. Stress 10:53–63

    CAS  PubMed  Google Scholar 

  76. Zhu X-J, Dai J-Q, Tan X, Zhao Y, Yang W-J (2009) Activation of an AMP-activated protein kinase is involved in post-diapause development of Artemia franciscana encysted embryos. BMC Develop Biol 9:21. http://www.biomedcentral.com/1471-213X/9/21

  77. Dai J-Q, Zhu X-J, Liu F-Q, Xiang J-H, Nagasawa H, Yang W-J (2008) Involvement of p90 ribosomal S6 kinase in termination of cell cycle arrest during development of Artemia-encysted embryos. J Biol Chem 283:1705–1712

    CAS  PubMed  Google Scholar 

  78. Vos MJ, Hageman J, Carra S, Kampinga HH (2008) Structural and functional diversities between members of the human HSPB, HSPH, HSPA, and DNAJ chaperone families. Biochemistry 47:7001–7011

    CAS  PubMed  Google Scholar 

  79. Bösl B, Grimminger V, Walter S (2006) The molecular chaperone Hsp104—a molecular machine for protein disaggregation. J Struct Biol 156:139–148

    PubMed  Google Scholar 

  80. Wandinger SK, Richter K, Buchner J (2008) The Hsp90 chaperone machinery. J Biol Chem 283:18473–18477

    CAS  PubMed  Google Scholar 

  81. Hahn J-S (2009) The Hsp90 chaperone machinery: from structure to drug development. BMB Rep 42:623–630

    CAS  PubMed  Google Scholar 

  82. Retzlaff M, Stahl M, Eberl HC, Lagleder S, Beck J, Kessler H, Buchner J (2009) Hsp90 is regulated by a switch point in the C-terminal domain. EMBO Rep 10:1147–1153

    CAS  PubMed  Google Scholar 

  83. Daugaard M, Rohde M, Jäättelä M (2007) The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions. FEBS Lett 581:3702–3710

    CAS  PubMed  Google Scholar 

  84. Meimaridou E, Gooljar SB, Chapple JP (2009) From hatching to dispatching: the multiple cellular roles of the Hsp70 molecular chaperone machinery. J Mol Endocrinol 42:1–9

    CAS  PubMed  Google Scholar 

  85. Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16:574–581

    CAS  PubMed  Google Scholar 

  86. Yam AY, Xia Y, Lin H-TJ, Burlingame A, Gerstein M, Frydman J (2008) Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies. Nat Struct Mol Biol 15:1255–1262

    CAS  PubMed  Google Scholar 

  87. Laksanalamai P, Robb FT (2004) Small heat shock proteins from extremophiles: a review. Extremophiles 8:1–11

    CAS  PubMed  Google Scholar 

  88. Sun Y, MacRae TH (2005) Small heat shock proteins: molecular structure and chaperone function. Cell Mol Life Sci 62:2460–2476

    CAS  PubMed  Google Scholar 

  89. Mchaourab HS, Godar JA, Stewart PL (2009) Structure and mechanism of protein stability sensors: chaperone activity of small heat shock proteins. Biochemistry 48:3828–3837

    CAS  PubMed  Google Scholar 

  90. Clegg JS, Jackson SA, Warner AH (1994) Extensive intracellular translocations of a major protein accompany anoxia in embryos of Artemia franciscana. Exp Cell Res 212:77–83

    CAS  PubMed  Google Scholar 

  91. Clegg JS, Jackson SA, Liang P, MacRae TH (1995) Nuclear-cytoplasmic translocations of protein p26 during aerobic-anoxic transitions in embryos of Artemia franciscana. Exp Cell Res 219:1–7

    CAS  PubMed  Google Scholar 

  92. Liang P, Amons R, MacRae TH, Clegg JS (1997) Purification, structure and in vitro molecular-chaperone activity of Artemia p26, a small heat-shock/α-crystallin protein. Eur J Biochem 243:225–232

    CAS  PubMed  Google Scholar 

  93. Liang P, Amons R, Clegg JS, MacRae TH (1997) Molecular characterization of a small heat shock/α-crystallin protein in encysted Artemia embryos. J Biol Chem 272:19051–19058

    CAS  PubMed  Google Scholar 

  94. Sun Y, MacRae TH (2005) Characterization of novel sequence motifs within N- and C-terminal extensions of p26, a small heat shock protein from Artemia franciscana. FEBS J 272:5230–5243

    CAS  PubMed  Google Scholar 

  95. Sun Y, Bojikova-Fournier S, MacRae TH (2006) Structural and functional roles for β-strand 7 in the α-crystallin domain of p26, a polydisperse small heat shock protein from Artemia franciscana. FEBS J 273:1020–1034

    CAS  PubMed  Google Scholar 

  96. Qiu Z, Bossier P, Wang X, Bojikova-Fournier S, MacRae TH (2006) Diversity, structure, and expression of the gene for p26, a small heat shock protein from Artemia. Genomics 88:230–240

    CAS  PubMed  Google Scholar 

  97. Crack JA, Mansour M, Sun Y, MacRae TH (2002) Functional analysis of a small heat shock/α-crystallin protein from Artemia franciscana. Eur J Biochem 269:933–942

    CAS  PubMed  Google Scholar 

  98. Sun Y, Mansour M, Crack JA, Gass GL, MacRae TH (2004) Oligomerization, chaperone activity, and nuclear localization of p26, a small heat shock protein from Artemia franciscana. J Biol Chem 279:39999–40006

    CAS  PubMed  Google Scholar 

  99. Day RM, Gupta JS, MacRae TH (2003) A small heat shock/α-crystallin protein from encysted Artemia embryos suppresses tubulin denaturation. Cell Stress Chaperones 8:183–193

    CAS  PubMed  Google Scholar 

  100. Liang P, MacRae TH (1999) The synthesis of a small heat shock/α-crystallin protein in Artemia and its relationship to stress tolerance during development. Dev Biol 207:445–456

    CAS  PubMed  Google Scholar 

  101. Jackson SA, Clegg JS (1996) Ontogeny of low molecular weight stress protein p26 during early development of the brine shrimp, Artemia franciscana. Dev Growth Differ 38:153–160

    CAS  Google Scholar 

  102. Willsie JK, Clegg JS (2001) Nuclear p26, a small heat shock/α-crystallin protein, and its relationship to stress resistance in Artemia franciscana embryos. J Exp Biol 204:2339–2350

    CAS  PubMed  Google Scholar 

  103. Willsie JK, Clegg JS (2002) Small heat shock protein p26 associates with nuclear lamins and HSP70 in nuclei and nuclear matrix fractions from stressed cells. J Cell Biochem 84:601–614

    PubMed  Google Scholar 

  104. Qiu Z, MacRae TH (2008) ArHsp21, a developmentally regulated small heat-shock protein synthesized in diapausing embryos of Artemia franciscana. Biochem J 411:605–611

    CAS  PubMed  Google Scholar 

  105. Qiu Z, MacRae TH (2008) ArHsp22, a developmentally regulated small heat shock protein produced in diapause-destined Artemia embryos, is stress inducible in adults. FEBS J 275:3556–3566

    CAS  PubMed  Google Scholar 

  106. McLennan AG, Miller D (1990) A biological role for the heat shock response in crustaceans. J Therm Biol 15:61–66

    Google Scholar 

  107. Clegg JS, Jackson SA, Popov VI (2000) Long-term anoxia in encysted embryos of the crustacean, Artemia franciscana: viability, ultrastructure, and stress proteins. Cell Tissue Res 301:433–446

    CAS  PubMed  Google Scholar 

  108. Tanguay JA, Reyes RC, Clegg JS (2004) Habitat diversity and adaptation to environmental stress in encysted embryos of the crustacean Artemia. J Biosci 29:489–501

    PubMed  Google Scholar 

  109. Clegg JS, Campagna V (2006) Comparisons of stress proteins and soluble carbohydrate in encysted embryos of Artemia franciscana and two species of Parartemia. Comp Biochem Physiol B 145:119–125

    PubMed  Google Scholar 

  110. Wang W, Meng B, Chen W, Ge X, Liu S, Yu J (2007) A proteomic study on postdiapaused embryonic development of brine shrimp (Artemia franciscana). Proteomics 7:3580–3591

    CAS  PubMed  Google Scholar 

  111. Gkouvitsas T, Kontogiannatos D, Kourti A (2008) Differential expression of two small Hsps during diapause in the corn stalk borer Sesamia nonagrioides (Lef.). J Insect Physiol 54:1503–1510

    CAS  PubMed  Google Scholar 

  112. Gkouvitsas T, Kontogiannatos D, Kourti A (2009) Cognate Hsp70 gene is induced during deep larval diapause in the moth Sesamia nonagrioides. Insect Mol Biol 18:253–264

    CAS  PubMed  Google Scholar 

  113. Gkouvitsas T, Kontogiannatos D, Kourti A (2009) Expression of the Hsp83 gene in response to diapause and thermal stress in the moth Sesamia nonagrioides. Insect Mol Biol 18:759–768

    CAS  PubMed  Google Scholar 

  114. Tungjitwitayakul J, Tatun N, Singtripop T, Sakurai S (2008) Characteristic expression of three heat shock-responsive genes during larval diapause in the bamboo borer Omphisa fuscidentalis. Zool Sci 25:321–333

    CAS  PubMed  Google Scholar 

  115. Sonoda S, Fukumoto K, Izumi Y, Yoshida H, Tsumuki H (2006) Cloning of heat shock protein genes (hsp90 and hsc70) and their expression during larval diapause and cold tolerance acquisition in the rice stem borer, Chilo suppressalis Walker. Arch Insect Biochem Physiol 63:36–47

    CAS  PubMed  Google Scholar 

  116. Tachibana S-I, Numata H, Goto SG (2005) Gene expression of heat-shock proteins (Hsp23, Hsp70 and Hsp90) during and after larval diapause in the blow fly Lucilia sericata. J Insect Physiol 51:641–647

    CAS  PubMed  Google Scholar 

  117. Yocum GD, Joplin KH, Denlinger DL (1998) Upregulation of a 23 kDa small heat shock protein transcript during pupal diapause in the flesh fly, Sarcophaga crassipalpis. Insect Biochem Mol Biol 28:677–682

    CAS  PubMed  Google Scholar 

  118. Hayward SAL, Pavlides SC, Tammariello SP, Rinehart JP, Denlinger DL (2005) Temporal expression patterns of diapause-associated genes in flesh fly pupae from the onset of diapause through post-diapause quiescence. J Insect Physiol 51:631–640

    CAS  PubMed  Google Scholar 

  119. Rinehart JP, Denlinger D (2000) Heat-shock protein 90 is down-regulated during pupal diapause in the flesh fly, Sarcophaga crassipalpis, but remains responsive to thermal stress. Insect Mol Biol 9:641–645

    CAS  PubMed  Google Scholar 

  120. Yocum GD, Kemp WP, Bosch J, Knoblett JN (2005) Temporal variation in overwintering gene expression and respiration in the solitary bee Megachile rotundata. J Insect Physiol 51:621–629

    CAS  PubMed  Google Scholar 

  121. Chen B, Kayukawa T, Monteiro A, Ishikawa Y (2006) Cloning and characterization of the HSP70 gene, and its expression in response to diapauses and thermal stress in the onion maggot, Delia antiqua. J Biochem Mol Biol 39:749–758

    CAS  PubMed  Google Scholar 

  122. Zhang Q, Denlinger DL (2009) Molecular characterization of heat shock protein 90, 70 and 70 cognate cDNAs and their expression patterns during thermal stress and pupal diapause in the corn earworm. J Insect Physiol. doi:10.1016/j.jinsphys.2009.09.013

  123. Chen Ma W, Wang X, Niu C, Lei C (2009) Analysis of pupal head proteome and its alteration in diapausing pupae of Helicoverpa armigera. J Insect Physiol. doi:10.1016/j.jinsphys.2009.10.008

  124. Chen B, Kayukawa T, Monteiro A, Ishikawa Y (2005) The expression of the Hsp90 gene in response to winter and summer diapauses and thermal-stress in the onion maggot, Delia antiqua. Insect Mol Biol 14:697–702

    CAS  PubMed  Google Scholar 

  125. Kayukawa T, Chen B, Miyazaki S, Itoyama K, Shinoda T, Ishikawa Y (2005) Expression of mRNA for the t-complex polypeptide-1, a subunit of chaperonin CCT, is upregulated in association with increased cold hardiness in Delia antiqua. Cell Stress Chaperones 10:204–210

    CAS  PubMed  Google Scholar 

  126. O’Connell PA, Pinto DM, Chisholm KA, MacRae TH (2006) Characterization of the microtubule proteome during post-diapause development of Artemia franciscana. Biochim Biophys Acta 1764:920–928

    PubMed  Google Scholar 

  127. Pauwels K, Stoks R, Verbiest A, De Meester L (2007) Biochemical adaptation for dormancy in subitaneous and dormant eggs of Daphnia magna. Hydrobiologia 594:91–96

    CAS  Google Scholar 

  128. Rinehart JP, Robich RM, Denlinger DL (2006) Enhanced cold and desiccation tolerance in diapausing adults of Culex pipiens, and a role for Hsp70 in response to cold shock but not as a component of the diapause program. J Med Entomol 43:713–722

    CAS  PubMed  Google Scholar 

  129. Li A, Denlinger DL (2009) Pupal cuticle protein is abundant during early adult diapause in the mosquito Culex pipiens. J Med Entomol 46:1382–1386

    CAS  PubMed  Google Scholar 

  130. Goto SG, Yoshida KM, Kimura MT (1998) Accumulation of Hsp70 mRNA under environmental stresses in diapausing and nondiapausing adults of Drosophila triauraria. J Insect Physiol 44:1009–1015

    CAS  PubMed  Google Scholar 

  131. Goto SG, Kimura MT (2004) Heat-shock-responsive genes are not involved in the adult diapause of Drosophila triauraria. Gene 326:117–122

    CAS  PubMed  Google Scholar 

  132. Yocum GD (2001) Differential expression of two HSP70 transcripts in response to cold shock, thermoperiod, and adult diapause in the Colorado potato beetle. J Insect Physiol 47:1139–1145

    CAS  PubMed  Google Scholar 

  133. De Graaf J, Amons R, Möller W (1990) The primary structure of artemin from Artemia cysts. Eur J Biochem 193:737–750

    PubMed  Google Scholar 

  134. Chen T, Amons R, Clegg JS, Warner AH, MacRae TH (2003) Molecular characterization of artemin and ferritin from Artemia franciscana. Eur J Biochem 270:137–145

    CAS  PubMed  Google Scholar 

  135. Warner AH, Brunet RT, MacRae TH, Clegg JS (2004) Artemin is an RNA-binding protein with high thermal stability and potential RNA chaperone activity. Arch Biochem Biophys 424:189–200

    CAS  PubMed  Google Scholar 

  136. Chen T, Villeneuve TS, Garant K, Amons R, MacRae TH (2007) Functional characterization of artemin, a ferritin homolog synthesized in Artemia embryos during encystment and diapause. FEBS J 274:1093–1101

    CAS  PubMed  Google Scholar 

  137. Poyton RO, Ball KA, Castello P (2009) Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol Metabol 20:332–340

    CAS  Google Scholar 

  138. Lopez-Martinez G, Elnitsky MA, Benoit JB, Lee RE Jr, Denlinger DL (2008) High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins. Insect Biochem Mol Biol 38:796–804

    CAS  PubMed  Google Scholar 

  139. Oracz K, El-Maarouf-Bouteau H, Kranner I, Bogatek R, Corbineau F, Bailly C (2009) The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. Plant Physiol 150:494–505

    CAS  PubMed  Google Scholar 

  140. Cox AG, Winterbourn CC, Hampton MB (2010) Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem J 425:313–325

    CAS  Google Scholar 

  141. Scarpeci TE, Zanor MI, Valle EM (2008) Investigating the role of plant heat shock proteins during oxidative stress. Plant Signal Behav 3:856–857

    PubMed  Google Scholar 

  142. Scarpeci TE, Zanor MI, Carrillo N, Mueller-Roeber B, Valle EM (2008) Generation of superoxide anion in chloroplasts of Arabidopsis thaliana during active photosynthesis: a focus on rapidly induced genes. Plant Mol Biol 66:361–378

    CAS  PubMed  Google Scholar 

  143. Arrigo A-P (2007) The cellular “networking” of mammalian Hsp27 and its functions in the control of protein folding, redox state and apoptosis. In: Csermely P, Vígh L (eds) Molecular aspects of the stress response: chaperones, membranes and networks, Landes Bioscience and Springer Science + Business Media, pp 14–26

  144. Hartwig K, Heidler T, Moch J, Daniel H, Wenzel U (2009) Feeding a ROS-generator to Caenorhabditis elegans leads to increased expression of small heat shock protein HSP-16.2 and hormeis. Genes Nutr 4:59–67

    CAS  PubMed  Google Scholar 

  145. Franco R, Cidlowski JA (2009) Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ 16:1303–1314

    CAS  PubMed  Google Scholar 

  146. Groeger G, Quiney C, Cotter TG (2009) Hydrogen peroxide as a cell-survival signaling molecule. Antiox Redox Signal 11:2655–2671

    CAS  Google Scholar 

  147. Gutscher M, Sobotta MC, Wabnitz GH, Ballikaya S, Meyer AJ, Samstag Y, Dick TP (2009) Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases. J Biol Chem 284:31532–31540

    CAS  PubMed  Google Scholar 

  148. Winterbourn CC, Hampton MB (2008) Thiol chemistry and specificity in redox signaling. Free Rad Biol Med 45:549–561

    CAS  PubMed  Google Scholar 

  149. Van Stappen G, Lavens P, Sorgeloos P (1998) Effects of hydrogen peroxide treatment in Artemia cysts of different geographical origin. Arch Hydrobiol Spec Issues Adv Limnol 52:281–296

    Google Scholar 

  150. Hagiwara A, Hoshi N, Kawahara F, Tominaga K, Hirayama K (1995) Resting eggs of the marine rotifer Brachionus plicatilis Müller: development, and effect of irradiation on hatching. Hydrobiologia 313(314):223–229

    Google Scholar 

  151. Villalobo A (2006) Nitric oxide and cell proliferation. FEBS J 273:2329–2344

    CAS  PubMed  Google Scholar 

  152. Kolbert Z, Ortega L, Erdei L (2010) Involvement of nitrate reductase (NR) in osmotic stress-induced NO generation of Arabidopsis thaliana L. roots. J Plant Physiol 167:77–80

    CAS  PubMed  Google Scholar 

  153. Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    CAS  PubMed  Google Scholar 

  154. Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59:165–176

    CAS  PubMed  Google Scholar 

  155. Maejima Y, Adachi S, Morikawa K, Ito H, Isobe M (2005) Nitric oxide inhibits myocardial apoptosis by preventing caspase-3 activity via S-nitrosylation. J Mol Cell Cardiol 38:163–174

    CAS  PubMed  Google Scholar 

  156. Nakamura T, Lipton SA (2008) Emerging roles of S-nitrosylation in protein misfolding and neurodegenerative diseases. Antiox Redox Signal 10:87–101

    CAS  Google Scholar 

  157. Hess DT, Matsumoto A, Kim S-O, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166

    CAS  PubMed  Google Scholar 

  158. Hancock J, Desikan R, Harrison J, Bright J, Hooley R, Neill S (2006) Doing the unexpected: proteins involved in hydrogen peroxide perception. J Exp Bot 57:1711–1718

    CAS  PubMed  Google Scholar 

  159. López-Sánchez LM, Muntané J, de la Mata M, Rodríguez-Ariza A (2009) Unraveling the S-nitrosoproteome: tools and strategies. Proteomics 9:808–818

    PubMed  Google Scholar 

  160. Benhar M, Forrester MT, Stamler JS (2009) Protein denitrosylation: enzymatic mechanisms and cellular functions. Nat Rev Mol Cell Biol 10:721–732

    CAS  PubMed  Google Scholar 

  161. Liu Y, Shi L, Ye N, Liu R, Jia W, Zhang J (2009) Nitric oxide-induced rapid decrease of abscisic acid concentration is required in breaking seed dormancy in Arabidopsis. New Phytol 183:1030–1042

    CAS  PubMed  Google Scholar 

  162. Clegg JS, Jackson SA (1998) The metabolic status of quiescent and diapause embryos of Artemia franciscana (Kellogg). Arch Hydrobiol Spec Issues Adv Limnol 52:425–439

    Google Scholar 

  163. Clegg JS (1997) Embryos of Artemia franciscana survive four years of continuous anoxia: the case for complete metabolic rate depression. J Exp Biol 200:467–475

    PubMed  Google Scholar 

  164. Clegg JS (2007) Protein stability in Artemia embryos during prolonged anoxia. Biol Bull 212:74–81

    Article  CAS  PubMed  Google Scholar 

  165. Menze MA, Fortner G, Nag S, Hand SC (2010) Mechanisms of apoptosis in Crustacea: what conditions induce versus suppress cell death? Apoptosis. doi:10:1007/s10495-009-0443-6

  166. Menze MA, Hutchinson K, Laborde SM, Hand SC (2005) Mitochondrial permeability transition in the crustacean Artemia franciscana: absence of a calcium-regulated pore in the face of profound calcium storage. Am J Physiol Regul Integr Comp Physiol 289:R68–R76

    CAS  PubMed  Google Scholar 

  167. Hand SC, Menze MA (2008) Mitochondria in energy-limited states: mechanisms that blunt the signaling of cell death. J Exp Biol 211:1829–1840

    CAS  PubMed  Google Scholar 

  168. Rojanathammanee L, Harmon EB, Grisanti LA, Govitrapong P, Ebadi M, Grove BD, Miyagi M, Porter JE (2009) The 27-kDa heat shock protein confers cytoprotective effects through a β2-adrenergic receptor agonist-initiated complex with β-arrestin. Mol Pharmacol 75:855–865

    CAS  PubMed  Google Scholar 

  169. Liu S, Li J, Tao Y, Xiao X (2007) Small heat shock protein αB-crystallin binds to p53 to sequester its translocation to mitochondria during hydrogen peroxide-induced apoptosis. Biochem Biophys Res Commun 354:109–114

    CAS  PubMed  Google Scholar 

  170. Mao Y-W, Liu J-P, Xiang H, Li DW-C (2004) Human αA- and αB-crystallins bind to Bax and Bcl-Xs to sequester their translocation during staurosporine-induced apoptosis. Cell Death Differ 11:521–526

    Google Scholar 

  171. Voss OH, Batra S, Kolattukudy SJ, Gonzalez-Mejia ME, Smith JB, Doseff AI (2007) Binding of caspase-3 prodomain to heat shock protein 27 regulates monocyte apoptosis by inhibiting caspase-3 proteolytic activity. J Biol Chem 282:25088–25099

    CAS  PubMed  Google Scholar 

  172. Shin J-H, Kim S-W, Lim C-M, Jeong J-Y, Piao C-S, Lee J-K (2009) αB-crystallin suppresses stress-induced astrocyte apoptosis by inhibiting caspase-3 activation. Neurosci Res 64:355–361

    CAS  PubMed  Google Scholar 

  173. Clegg JS (2001) Cryptobiosis—a peculiar state of biological organization. Comp Biochem Physiol B 128:613–624

    CAS  PubMed  Google Scholar 

  174. Wolkers WF, Tablin F, Crowe JH (2002) From anhydrobiosis to freeze-drying of eukaryotic cells. Comp Biochem Physiol A 131:535–543

    Google Scholar 

  175. Crowe JH (2007) Trehalose as a “chemical chaperone”: fact and fantasy. Adv Exp Med Biol 594:143–158

    PubMed  Google Scholar 

  176. Crowe JH, Clegg JS, Crowe LM (1998) Anhydrobiosis: the water replacement hypothesis. In: Reid DS (ed) The properties of water in foods ISOPOW 6. Blackie Academic and Professional, New York, pp 440–455

    Google Scholar 

  177. Clegg JS, Trotman CNA (2002) Physiological and biochemical aspects of Artemia ecology. In: ThJ Abatzopoulos, Beardmore JA, Clegg JS, Sorgeloos P (eds) Artemia basic and applied biology. Kluwer, The Netherlands, pp 129–170

    Google Scholar 

  178. Browne J, Tunnacliffe A, Burnell A (2002) Plant desiccation gene found in a nematode. Nature 416:38

    CAS  PubMed  Google Scholar 

  179. Clegg JS (1965) The origin of trehalose and its significance during the formation of encysted dormant embryos of Artemia salina. Comp Biochem Physiol A 14:135–143

    CAS  Google Scholar 

  180. Clegg JS, Willsie JK, Jackson SA (1999) Adaptive significance of a small heat shock/α-crystallin protein (p26) in encysted embryos of the brine shrimp, Artemia franciscana. Am Zool 39:836–847

    CAS  Google Scholar 

  181. Benoit JB, Lopez-Martinez G, MR Michaud, Elnitsky MA, Lee RE Jr, Denlinger DL (2007) Mechanisms to reduce dehydration stress in larvae of the Antarctic midge, Belgica antarctica. J Insect Physiol 53:656–667

    CAS  PubMed  Google Scholar 

  182. Atapour M, Moharramipour S (2009) Changes in cold hardiness, supercooling capacity, and major cryoprotectants in overwintering larvae of Chilo suppressalis (Lepidoptera: Pyralidae). Physiol Ecol 38:260–265

    CAS  Google Scholar 

  183. Galau GA, Hughes DW, Dure L III (1986) Abscisic acid induction of cloned cotton late embryogenesis-abundant (Lea) mRNAs. Plant Mol Biol 7:155–170

    CAS  Google Scholar 

  184. Stacy RAP, Aalen RB (1998) Identification of sequence homology between the internal hydrophilic repeated motifs of Group 1 late-embryogenesis-abundant proteins in plants and hydrophilic repeats of the general stress protein GsiB of Bacillus subtilis. Planta 206:476–478

    CAS  PubMed  Google Scholar 

  185. Tunnacliffe A, Lapinski J, McGee B (2005) A putative LEA protein, but no trehalose, is present in anhydrobiotic bdelloid rotifers. Hydrobiologia 546:315–321

    CAS  Google Scholar 

  186. Gal TZ, Glazer I, Koltai H (2004) An LEA group 3 family member is involved in survival of C. elegans during exposure to stress. FEBS Lett 577:21–26

    CAS  PubMed  Google Scholar 

  187. Menze MA, Hand SC (2009) How do animal mitochondria tolerate water stress? Commun Integr Biol 2:428–430

    CAS  PubMed  Google Scholar 

  188. Hand SC, Jones D, Menze MA, Witt TL (2007) Life without water: expression of plant LEA genes by an anhydrobiotic arthropod. J Exp Zool 307A:62–66

    CAS  Google Scholar 

  189. Wang S, Sun S (2007) Comparative observations on the cyst shells of seven Artemia strains from China. Microsc Res Tech 70:663–670

    PubMed  Google Scholar 

  190. Tompa P, Szász C, Buday L (2005) Structural disorder throws new light on moonlighting. Trends Biochem Sci 30:484–489

    CAS  PubMed  Google Scholar 

  191. Ma X, Jamil K, MacRae TH, Clegg JS, Russell JM, Villeneuve TS, Euloth M, Sun Y, Crowe JH, Tablin F, Oliver AE (2005) A small stress protein acts synergistically with trehalose to confer desiccation tolerance on mammalian cells. Cryobiology 51:15–28

    CAS  PubMed  Google Scholar 

  192. Morris JE, Afzelius BA (1967) The structure of the shell and outer membranes in encysted Artemia salina embryos during cryptobiosis and development. J Ultrastruct Res 20:244–259

    CAS  PubMed  Google Scholar 

  193. Anderson E, Lochhead JH, Lochhead MS, Huebner E (1970) The origin and structure of the tertiary envelope in thick-shelled eggs of the brine shrimp, Artemia. J Ultrastruct Res 32:497–525

    CAS  PubMed  Google Scholar 

  194. Rosowski J, Belk D, Gouthro MA, Lee KW (1997) Ultrastructure of the cyst shell and underlying membranes of the brine shrimp Artemia franciscana Kellogg (Anostraca) during postencystic development, emergence, and hatching. J Shellfish Res 16:233–249

    Google Scholar 

  195. De Chaffoy D, De Maeyer-Criel G, Kondo M (1978) On the permeability and formation of the embryonic cuticle during development in vivo and in vitro of Artemia salina embryos. Differentiation 12:99–109

    Google Scholar 

  196. Covi JA, Hand SC (2005) V-ATPase expression during development of Artemia franciscana embryos: potential role for proton gradients in anoxia signaling. J Exp Biol 208:2783–2798

    CAS  PubMed  Google Scholar 

  197. Covi JA, Hand SC (2007) Energizing an invertebrate embryo: bafilomycin-dependent respiration and the metabolic cost of proton pumping by the V-ATPase. Physiol Biochem Zool 80:422–432

    CAS  PubMed  Google Scholar 

  198. Machado BE, Podrabsky JE (2007) Salinity tolerance in diapausing embryos of the annual killifish Austrofundulus limnaeus is supported by exceptionally low water and ion permeability. J Comp Physiol B 177:809–820

    PubMed  Google Scholar 

Download references

Acknowledgments

T.H.M. is supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas H. MacRae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacRae, T.H. Gene expression, metabolic regulation and stress tolerance during diapause. Cell. Mol. Life Sci. 67, 2405–2424 (2010). https://doi.org/10.1007/s00018-010-0311-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0311-0

Keywords

Navigation