Skip to main content
Log in

Fully discrete finite element scheme for nonlocal parabolic problem involving the Dirichlet energy

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this article we present a finite element scheme for solving a nonlocal parabolic problem involving the Dirichlet energy. For time discretization, we use backward Euler method. The nonlocal term causes difficulty while using Newton’s method. Indeed, after applying Newton’s method we get a full Jacobian matrix due to the nonlocal term. In order to avoid this difficulty we use the technique given by Gudi (SIAM J Numer Anal 50(2):657–668, 2012) for elliptic nonlocal problem of Kirchhoff type. We discuss the well-posedness of the weak formulation at continuous as well as at discrete levels. We also derive a priori error estimates for both semi-discrete and fully discrete formulations. Results based on the usual finite element method are provided to confirm the theoretical estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chipot, M., Lavot, B.: Remarks on a nonlocal problem involving the Dirichlet energy. Rend. Sem. Mat. Univ. Padova 110, 199–220 (2003)

    MathSciNet  Google Scholar 

  2. Zheng, S., Chipot, M.: Asymptotic behavior of solutions to nonlinear parabolic equations with nonlocal terms. Asymptot. Anal. 45, 301–312 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Robalo, R.J., Almeida, R.M.P., do Carmo Coimbra, M., Ferreira, J.: A reaction diffusion model for a class of nonlinear parabolic equations with moving boundaries: existence, uniqueness, exponential decay and simulation. Appl. Math. Model. 38(23), 5609–5622 (2014)

    Article  MathSciNet  Google Scholar 

  4. Ma, T.F.: Remarks on an elliptic equation of Kirchhoff type. Nonlinear Anal. 63, 1967–1977 (2005)

    Article  Google Scholar 

  5. Gudi, T.: Finite element method for a nonlocal problem of Kirchhoff type. SIAM J. Numer. Anal. 50(2), 657–668 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gronwall, T.H.: Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math. 20(2), 293–296 (1919)

    MathSciNet  Google Scholar 

  7. Dragomir, S.S.: Some Gronwall Type Inequalities and Applications. RGMIA Monographs, Victoria University, Melbourne (2002)

    Google Scholar 

  8. Pani, A.K., Thomée, V., Wahlbin, L.B.: Numerical methods for hyperbolic and parabolic integro-differential equations. J. Integr. Equ. Appl. 4(4), 533–584 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lions, J.L.: Quelques methodes de résolution des problémes aux limites non linéaires, Dunod (1969)

  10. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw Hill, New York (1965)

    MATH  Google Scholar 

  11. Sharma, N., Sharma, K.K.: Unconditionally stable numerical method for a nonlinear partial integro-differential equation. Comput. Math. Appl. 67(1), 62–76 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gudi, T., Gupta, H.S.: A fully discrete \(C^0\) interior penalty Galerkin approximation of the extended Fisher–Kolmogorov equation. J. Comput. Appl. Math. 247, 1–16 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chipot, M.: Elements of Nonlinear Analysis. Birkhauser Advanced Texts, Berlin (2000)

    Book  MATH  Google Scholar 

  14. Wheeler, M.F.: A Priori \(l_2\) error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10(4), 723–759 (1973)

    Article  MATH  Google Scholar 

  15. Rannacher, R., Scott, R.: Some optimal error estimates for piecewise linear finite element approximation. Math. Compet. 38, 437–445 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Govaerts, W., Pryce, J.D.: Block elimination with one refinement solves bordered linear system accurately. BIT 30, 490–507 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pani, A.K., Fairweather, G.: \(H^1\)-Galerkin mixed finite element methods for parabolic partial integro-differential equations. IMA J. Numer. Anal. 22, 231–252 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pani, A.K.: An \(H^1\)-Galerkin mixed finite element methods for parabolic partial differential equations. SIAM J. Numer. Anal. 35(2), 712–727 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors acknowledge anonymous reviewers for many helpful suggestions and comments. Also, the authors would like to sincerely thank Dr. T. Gudi for his valuable suggestions. The second author’s work is supported by National Board for Higher Mathematics, DAE,(Grant No. 2/40(26)/2014/R&D-II/9598) India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhakar Chaudhary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, V., Chaudhary, S., Kumar, V.V.K.S. et al. Fully discrete finite element scheme for nonlocal parabolic problem involving the Dirichlet energy. J. Appl. Math. Comput. 53, 413–443 (2017). https://doi.org/10.1007/s12190-015-0975-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-015-0975-6

Keywords

Mathematics Subject Classifications

Navigation