Skip to main content

Advertisement

Log in

Assessing the Performance of Bacterial Cellulases: the Use of Bacillus and Paenibacillus Strains as Enzyme Sources for Lignocellulose Saccharification

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Plant biomass offers a renewable and environmentally favorable source of sugars that can be converted to different chemicals, second-generation ethanol, and other liquid fuels. Cellulose makes up approximately 45 % of the dry weight of lignocellulosic biomass. Prior to the enzymatic hydrolysis of cellulose, lignin and hemicellulose must be structurally altered or removed, at least in part, by chemical and/or physical pretreatments. However, the high cost and low efficiency of the enzymatic hydrolysis prevent the process from being economically competitive. For this reason, it is necessary to find enzymes suitable for this type of process, with higher specific activities and greater efficiency. Members of the Bacillus and Paenibacillus genera have been traditionally used for the production of many enzymes for industrial applications. Cellulases produced by both genera have shown activity on soluble and crystalline cellulose and high thermostability and/or activity over a wide pH spectrum. In this review, the most recent information about the characterization of cellulolytic enzymes obtained from new strains of the Bacillus and Paenibacillus genera are reviewed. We focused on the variety of isoenzymes produced by these cellulolytic strains, their optimal production and reaction conditions, and their kinetic parameters and biotechnological potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ingram LO, Aldrich HC, Borges ACC, Cause TB, Martínez A, Morales F, Sal A, Underwood SA, Yomano LP, York SW, Zaldivar J, Zhou S (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog 15:855–866. doi:10.1021/bp9901062

    Article  CAS  PubMed  Google Scholar 

  2. Greene N (2004) Growing energy. How biofuels can help end America’s oil dependence. Natural Resources Defense Council.

  3. U.S. DOE (2006). Breaking the biological barriers to cellulosic ethanol: a joint research agenda, DOE/SC-0095. U.S. Department of Energy, Office of Science and Office of Energy Effciency and Renewable Energy.

  4. Martínez A, Bolívar F & Gosset G (2002) Biotecnología energética sustentable: Etanol carburante para el transporte. Revista Universidad de México, 617: páginas centrales. (in Spanish).

  5. Martínez A, ME R, López-Munguía A, Gosset G (2006) ¿Etanol carburante a partir de bagazo de caña? Revista Claridades Agropecuarias 155:33–39 in Spanish

    Google Scholar 

  6. Lal R (2005) World crop residues production and implications of its use as a biofuel. Environ Int 31:571–584

    Article  CAS  Google Scholar 

  7. Programa de Introducción de Bioenergéticos. Secretaría de Energía (2008) http://www.bioenergeticos.gob.mx/bio/descargas/Programa-Introduccion-de-Bioenergeticos.pdf. (in Spanish)

  8. Alatorre-Frenk C (2009) Energías Renovables para el Desarrollo Sustentable en México. Secretaría de Energía (SENER), Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH. Ed. por Valle-Pereña JA, Eckermann A y Barzalobre V. Forever Print S.A. de C.V., México, D.F. 70 págs. url: http://www.energia.gob.mx/. (in Spanish).

  9. Instituto Veracruzano de Bioenergéticos (2016) Gobierno del Estado de Veracruz, México. http://www.inverbio.gob.mx/(in Spanish).

  10. Pérez J, Muñoz-Dorado J, De la Rubia T, Martínez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5(2):53–63

    Article  PubMed  CAS  Google Scholar 

  11. Béguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13(1):25–58

    Article  PubMed  Google Scholar 

  12. Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101(13):4775–4800

    Article  PubMed  CAS  Google Scholar 

  13. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861

    Article  CAS  PubMed  Google Scholar 

  14. Li X, Clarke K, Li K, Chen A (2012) The pattern of cell wall deterioration in lignocellulose fibers throughout enzymatic cellulose hydrolysis. Biotechnol Prog 28(6):1389–1399

    Article  CAS  PubMed  Google Scholar 

  15. Vargas-Tah A, Moss-Acosta C, Trujillo-Martinez B, Tiessen A, Lozoya-Gloria E, Orencio-Trejo M, Gosset G, Martinez A (2015) Non-severe thermochemical hydrolysis of stover from white corn and sequential enzymatic saccharification and fermentation to ethanol. Bioresource Technol 198:611–618

    Article  CAS  Google Scholar 

  16. Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96(18):1986–1993

    Article  CAS  PubMed  Google Scholar 

  17. Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 1(2):119–134

    Article  CAS  Google Scholar 

  18. Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194

    Article  PubMed  CAS  Google Scholar 

  19. Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Asha BM, Revathi M, Yadav A, Sakthivel N (2012) Purification and characterization of a thermophilic cellulase from a novel cellulolytic strain, Paenibacillus barcinonensis. J Microbiol Biotechnol 22(11):1501–1509

    Article  CAS  PubMed  Google Scholar 

  21. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35(5):377–391

    Article  CAS  PubMed  Google Scholar 

  22. Maki M, Leung KT, Qin W (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5(5):500–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Banerjee G, Scott-Craig JS, Walton JD (2010) Improving enzymes for biomass conversion: a basic research perspective. Bioenergy Res 3(1):82–92

    Article  Google Scholar 

  24. Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Okamoto T, Penttilä M, Ando T, Samejima M (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface 33:1279–1282.

  25. Suwannarangsee S, Bunterngsook B, Arnthong J, Paemanee A, Thamchaipenet A, Eurwilaichitr L et al (2012) Optimisation of synergistic biomass degrading enzyme systems for efficient rice straw hydrolysis using an experimental mixture design. Bioresour Technol 119:252–261

    Article  CAS  PubMed  Google Scholar 

  26. Greene ER, Himmel ME, Beckham GT, Tan Z (2015) Chapter three—glycosylation of cellulases: engineering better enzymes for biofuels, In: Baker DC, Horton D, (ed), Advances in carbohydrate chemistry and biochemistry 72: 63–112.

  27. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807

    Article  CAS  PubMed  Google Scholar 

  28. Lee YJ, Kim BK, Lee BH, Jo KI, Lee NK, Chung CH et al (2008) Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresour Technol 99(2):378–386

    Article  CAS  PubMed  Google Scholar 

  29. Beldman G, Voragen AGJ, Rombouts FM, Searle-van Leeuwen MF, Pilnik W (1987) Adsorption and kinetic behaviour of purified endoglucanases and exoglucanases from Trichoderma viride. Biotechnol Bioeng 30(2):251–257

    Article  CAS  PubMed  Google Scholar 

  30. Shen H, Gilkes NR, Kilburn DG, Miller RC, Warren RAJ (1995) Cellobiohydrolase B, a second exo-cellobiohydrolase from the cellulolytic bacterium Cellulomonas fimi. Biochem J 311(Pt 1):67–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. LE T II, Henrissat B, Coutinho PM, Ekborg NA, Hutcheson SW, Weiner RM (2006) Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2–40. J Bacteriol 188(11):3849–3861

    Article  CAS  Google Scholar 

  32. Badhan AK, Chadha BS, Kaur J, Saini HS, Bhat MK (2007) Production of multiple xylanolytic and cellulolytic enzymes by thermophilic fungus Myceliophthora sp. IMI 387099. Bioresour Technol 98(3):504–510

    Article  CAS  PubMed  Google Scholar 

  33. Gilbert M, Breuil C, Saddler JN (1992) Characterization of the enzymes present in the cellulase system of Thielavia terrestris 255B. Bioresour Technol 39(2):147–154

    Article  CAS  Google Scholar 

  34. Herpöel-Gimbert I, Margeot A, Dolla A, Jan G, Mollé D, Lignon S et al (2008) Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol Biofuels 1(1):18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Gastelum-Arellanez A, Paredes-López O, Olalde-Portugal V (2014) Extracellular endoglucanase activity from Paenibacillus polymyxa BEb-40: production, optimization and enzymatic characterization. World J Microbiol Biotechnol 30(11):2953–2965

    Article  CAS  PubMed  Google Scholar 

  36. Ekborg NA, Morrill W, Burgoyne AM, Li L, Distel DL (2007) CelAB, a multifunctional cellulase encoded by Teredinibacter turnerae T7902T, a culturable symbiont isolated from the wood-boring marine bivalve Lyrodus pedicellatus. Appl Environ Microbiol 73(23):7785–7788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ko CH, Chen WL, Tsai CH, Jane WN, Liu CC, Tu J (2007) Paenibacillus campinasensis BL11: a wood material-utilizing bacterial strain isolated from black liquor. Bioresour Technol 98(14):2727–2733

    Article  CAS  PubMed  Google Scholar 

  38. Wang CM, Shyu CL, Ho SP, Chiou SH (2008) Characterization of a novel thermophilic, cellulose-degrading bacterium Paenibacillus sp. strain B39. Lett Appl Microbiol 47(1):46–53

    Article  CAS  PubMed  Google Scholar 

  39. Liang Y, Yesuf J, Schmitt S, Bender K, Bozzola J (2009) Study of cellulases from a newly isolated thermophilic and cellulolytic Brevibacillus sp. strain JXL. J Ind Microbiol Biotechnol 36(7):961–970

    Article  CAS  PubMed  Google Scholar 

  40. Li W, Zhang WW, Yang MM, Chen YL (2008) Cloning of the thermostable cellulase gene from newly isolated Bacillus subtilis and its expression in Escherichia coli. Mol Biotechnol 40(2):195–201

    Article  CAS  PubMed  Google Scholar 

  41. Afzal S, Saleem M, Yasmin R, Naz M, Imran M (2009) Pre and post cloning characterization of a β-1,4-endoglucanase from Bacillus sp. Mol Biol Rep 37(4):1717–1723

    Article  PubMed  CAS  Google Scholar 

  42. Yang D, Weng H, Wang M, Xu W, Li Y, Yang H (2010) Cloning and expression of a novel thermostable cellulase from newly isolated Bacillus subtilis strain I15. Mol Biol Rep 37(4):1923–1929

    Article  CAS  PubMed  Google Scholar 

  43. Lloberas J, Perez-Pons JA, Querol E (1991) Molecular cloning, expression and nucleotide sequence of the endo-β-1,3-1,4-D-glucanase gene from Bacillus licheniformis. Predictive structural analyses of the encoded polypeptide. Eur J Biochem 197(2):337–343

    Article  CAS  PubMed  Google Scholar 

  44. Li W, Huan X, Zhou Y, Ma Q, Chen Y (2009) Simultaneous cloning and expression of two cellulase genes from Bacillus subtilis newly isolated from golden takin (Budorcas taxicolor Bedfordi. Biochem Biophys Res Commun 383(4):397–400

    Article  CAS  PubMed  Google Scholar 

  45. Falkoski DL, Guimarães VM, de Almeida MN, Alfenas AC, Colodette JL, de Rezende ST (2012) Characterization of cellulolytic extract from Pycnoporus sanguineus PF-2 and its application in biomass saccharification. Appl Biochem Biotechnol 166(6):1586–1603

    Article  CAS  PubMed  Google Scholar 

  46. Castro AM, Pedro KCNR, Cruz JC, Ferreira MC, Leite SGF, Pereira N Jr (2010) Trichoderma harzianum IOC-4038: a promising strain for the production of a cellulolytic complex with significant β-glucosidase activity from sugarcane bagasse cellulignin. Appl Biochem Biotechnol 162(7):2111–2122

    Article  PubMed  CAS  Google Scholar 

  47. AM C, de Carvalho ML d A, SG FL, Pereira N (2010) Cellulases from Penicillium funiculosum: production, properties and application to cellulose hydrolysis. J Ind Microbiol Biotechnol 37(2):151–158

    Article  CAS  Google Scholar 

  48. Karboune S, Geraert PA, Kermasha S (2008) Characterization of selected cellulolytic activities of multi-enzymatic complex system from Penicillum funiculosum. J Agric Food Chem 56(3):903–909

    Article  CAS  PubMed  Google Scholar 

  49. Zhou J, Wang YH, Chu J, Luo LZ, Zhuang YP, Zhang SL (2009) Optimization of cellulase mixture for efficient hydrolysis of steam-exploded corn stover by statistically designed experiments. Bioresour Technol 100(2):819–825

    Article  CAS  PubMed  Google Scholar 

  50. Rosgaard L, Pedersen S, Langston J, Akerhielm D, Cherry JR, Meyer AS (2007) Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated barley straw substrates. Biotechnol Prog 23(6):1270–1276

    Article  CAS  PubMed  Google Scholar 

  51. Hill C, BR S, Tomashek J (2011) Process for enzymatic hydrolysis of pretreated lignocellulosic feedstocks. Patent US 8,017,373 B2 (United States). Iogen Energy Corporation, Ontario (CA)

    Google Scholar 

  52. Viikari L, Alapuranen M, Puranen T, Vehmaanperä J, Siika-aho M (2007) Thermostable enzymes in lignocellulose hydrolysis. In: Olsson L (ed) Biofuels vol. 108 of advances in biochemical engineering/biotechnology. Springer, Berlin Heidelberg, pp. 121–145

    Google Scholar 

  53. Walker LP, Belair CD, Wilson DB, Irwin DC (1993) Engineering cellulase mixtures by varying the mole fraction of Thermomonospora fusca E5 and E3, Trichoderma reesei CBHI, and Caldocellum saccharolyticum β-glucosidase. Biotechnol Bioeng 42(9):1019–1028

    Article  CAS  PubMed  Google Scholar 

  54. Irwin DC, Spezio M, Walker LP, Wilson DB (1993) Activity studies of eight purified cellulases: specificity, synergism, and binding domain effects. Biotechnol Bioeng 42(8):1002–1013

    Article  CAS  PubMed  Google Scholar 

  55. Kim E, Irwin DC, Walker LP, Wilson DB (1998) Factorial optimization of a six-cellulase mixture. Biotechnol Bioeng 58(5):494–501

    Article  CAS  PubMed  Google Scholar 

  56. Harchand RK, Singh S (1997) Characterization of cellulase complex of Streptomyces albaduncus. J Basic Microbiol 37(2):93–103

    Article  CAS  PubMed  Google Scholar 

  57. Ekperigin MM (2007) Preliminary studies of cellulase production by Acinetobacter anitratus and Branhamella sp. Afr J Biotechnol 6(1):28–33

    CAS  Google Scholar 

  58. Rastogi G, Bhalla A, Adhikari A, Bischoff KM, Hughes SR, Christopher LP et al (2010) Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresour Technol 101(22):8798–8806

    Article  CAS  PubMed  Google Scholar 

  59. Pandey S, Singh S, Yadav AN, Nain L, Saxena AK (2013) Phylogenetic diversity and characterization of novel and efficient cellulase producing bacterial isolates from various extreme environments. Biosci Biotechnol Biochem 77(7):1474–1480

    Article  CAS  PubMed  Google Scholar 

  60. Holtzapple M, Cognata M, Shu Y, Hendrickson C (1990) Inhibition of Trichoderma reesei cellulase by sugars and solvents. Biotechnol Bioeng 36(3):275–287

    Article  CAS  PubMed  Google Scholar 

  61. Zhang J, Viikari L (2012) Xylo-oligosaccharides are competitive inhibitors of cellobiohydrolase I from Thermoascus aurantiacus. Bioresour Technol 117(0):286–291

    Article  CAS  PubMed  Google Scholar 

  62. Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M (2010) Inhibition of cellulases by phenols. Enzym Microb Technol 46(3–4):170–176

    Article  CAS  Google Scholar 

  63. Qing Q, Yang B, Wyman CE (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 101(24):9624–9630

    Article  CAS  PubMed  Google Scholar 

  64. Berlin A, Balakshin M, Gilkes N, Kadla J, Maximenko V, Kubo S et al (2006) Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations. J Biotechnol 125(2):198–209

    Article  CAS  PubMed  Google Scholar 

  65. Xiao Z, Zhang X, Gregg DJ, Saddler JN (2004) Effects of sugar inhibition on cellulases and β-glucosidase during enzymatic hydrolysis of softwood substrates. Appl Biochem Biotechnol 115(1–3):1115–1126

    Article  Google Scholar 

  66. Tengborg C, Galbe M, Zacchi G (2001) Reduced inhibition of enzymatic hydrolysis of steam-pretreated softwood. Enzym Microb Technol 28(9–10):835–844

    Article  CAS  Google Scholar 

  67. Johnson EA, Madia A, Demain AC (1981) Chemically defined minimal medium for growth of the anaerobic cellulolytic thermophile Clostridium thermocellum. Appl Environ Microbiol 41(4):1060–1062

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ariffin H, Hassan MA, Shah UKM, Abdullah N, Ghazali FM, Shirai Y (2008) Production of bacterial endoglucanase from pretreated oil palm empty fruit bunch by Bacillus pumilus EB3. J Biosci Bioeng 106(3):231–236

    Article  CAS  PubMed  Google Scholar 

  69. Beukes N, BI P (2006) Effect of sulfur-containing compounds on Bacillus cellulosome-associated ‘CMCase’ and ‘Avicelase’ activities. FEMS Microbiol Lett 264(2):226–231

    Article  CAS  PubMed  Google Scholar 

  70. Kim CH, Kim DS (1995) Purification and specificity of a specific endo-β-1,4-D-glucanse (Avicelase II) resembling exo-cellobiohydrolase from Bacillus circulans. Enzym Microb Technol 17(3):248–254

    Article  CAS  Google Scholar 

  71. MS O, Mohammed N, Ingram LO, Shanmugam KT (2009) Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts. Appl Biochem Biotechnol 155(1–3):379–385

    Google Scholar 

  72. Ash C, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 64(3–4):253–260

    CAS  PubMed  Google Scholar 

  73. Kim SB, Timmusk S (2013) A simplified method for gene knockout and direct screening of recombinant clones for application in Paenibacillus polymyxa. PLoS One 8(6):e68092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bayer EA, Chancy H, Lamed R, Shoham Y (1998) Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol 8(5):548–557

    Article  CAS  PubMed  Google Scholar 

  75. RH D (2008) Cellulases of mesophilic microorganisms: cellulosome and noncellulosome producers. Ann N Y Acad Sci 1125:267–279

    Article  CAS  Google Scholar 

  76. RH D, Kosugi A (2004) Cellulosomes: plant-cell-wall degrading enzyme complexes. Nat Rev Microbiol 2(7):541–551

    Article  CAS  Google Scholar 

  77. RH D, Kosugi A, Murashima K, Tamaru Y, SO H (2003) Cellulosomes from mesophilic bacteria. J Bacteriol 185(20):5907–5914

    Article  CAS  Google Scholar 

  78. Waeonukul R, KL K, Sakka K, Ratanakhanokchai K (2008) Effect of carbon sources on the induction of xylanolytic-cellulolytic multienzyme complexes in Paenibacillus curdlanolyticus strain B-6. Biosci Biotechnol Biochem 72(2):321–328

    Article  CAS  PubMed  Google Scholar 

  79. Kim CH, Kim DS (1993) Extracellular cellulolytic enzymes of Bacillus circulans are present as two multiple-protein complexes. Appl Biochem Biotechnol 42:83–94

    Article  CAS  Google Scholar 

  80. Van Dyk JS, van Sakka M, Sakka K, BI P (2009) The cellulolytic and hemicellulolytic system of Bacillus licheniformis SVD1 and the evidence for production of a large multi-enzyme complex. Enzym Microb Technol 45(5):372–378

    Article  CAS  Google Scholar 

  81. Fanutti C, Ponyi T, Black GW, Hazlewood GP, Gilbert HJ (1995) The conserved noncatalytic 40-residue sequence in cellulases and hemicellulases from anaerobic fungi functions as a protein docking domain. J Biol Chem 270(49):29314–29322

    Article  CAS  PubMed  Google Scholar 

  82. Li XL, Chen H, Ljungdahl LG (1997) Two cellulases, CelA and CelC, from the polycentric anaerobic fungus Orpinomyces strain PC-2 contain N-terminal docking domains for a cellulase-hemicellulase complex. Appl Environ Microbiol 63(12):4721–4728

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lamed R, Setter E, Kenig R, Bayer EA (1983) Cellulosome: a discrete cell surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities. Biotechnology and Bioengineering Symposium 13:163–181

    CAS  Google Scholar 

  84. Bayer EA, Morag E, Lamed R (1994) The cellulosome—a treasure-trove for biotechnology. Trends Biotechnol 12(9):379–386

    Article  CAS  PubMed  Google Scholar 

  85. Bayer EA, Belaich JP, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554

    Article  CAS  PubMed  Google Scholar 

  86. Demain AL, Newcomb M, JHD W (2005) Cellulase, clostridia and ethanol. Microbiol Mol Biol Rev 69(1):124–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shoham Y, Lamed R, Bayer EA (1999) The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol 7(7):275–281

    Article  CAS  PubMed  Google Scholar 

  88. Pason P, Kyu KL, Ratanakhanokchai K (2006) Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides. Appl Environ Microbiol 72(4):2483–2490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Waeonukul R, Kyu KL, Sakka Ky, Ratanakhanokchai K (2009) Isolation and characterization of a multienzyme complex (cellulosome) of the Paenibacillus curdlanolyticus B-6 grown on Avicel under aerobic conditions. J Biosci Bioeng 107(6):610–614

    Article  CAS  PubMed  Google Scholar 

  90. Górska E, Tudek B, Russel S (2001) Degradation of cellulose by nitrogen-fixing strain of Bacillus polymyxa. Acta Microbiol Pol 50(2):129–137

    PubMed  Google Scholar 

  91. Górska EB, Jankiewicz U, Dobrzynski J, Russel S, Pietkiewicz S, Kalaji H et al (2015) Degradation and colonization of cellulose by diazotrophic strains of Paenibacillus polymyxa isolated from soil. J Biorem Biodegrad 6:271

    Article  CAS  Google Scholar 

  92. Dinis NJ, Bezerra RMF, Nunes F, Dias AA, Guedes CV, Ferreira LMM et al (2009) Modification of wheat straw lignin by solid state fermentation with white-rot fungi. Bioresour Technol 100(20):4829–4835

    Article  CAS  PubMed  Google Scholar 

  93. Chu PW, Yap MN, CY W, Huang CM, Pan FM, Tseng MJ et al (2000) A proteomic analysis of secreted proteins from xylan-induced Bacillus sp. strain K-1. Electrophoresis 21(9):1740–1745

    Article  CAS  PubMed  Google Scholar 

  94. FL S Jr, Melo IS, Dias AC, Andreote FD (2012) Cellulolytic bacteria from soils in harsh environments. World J Microbiol Biotechnol 28:2195–2203

    Article  CAS  Google Scholar 

  95. Sudiana IM, Rahayu RD, Imanuddin H, Rahmansyah M (2001) Cellulolytic bacteria of soil of Gunung Halimun National Park. Edisi Khusus Biodiversitas Taman Nasional Gunung Halimun Berita Biologi 25:703–709

    Google Scholar 

  96. Kim JK, Lee SC, Cho YY, Oh HJ, Ko YH (2012) Isolation of cellulolytic Bacillus subtilis strains from agricultural environments. ISRN Microbiology.

  97. Sánchez MM, Fritze D, Blanco A, Spröer C, Tindall BJ, Schumann P, Kroppenstedt RM, Diaz P, Pastor FIJ (2005) Paenibacillus barcinonensis sp. nov., a xylanase-producing bacterium isolated from a rice field in the Ebro River delta. Int J Syst Evol Microbiol 55:935–939

    Article  PubMed  CAS  Google Scholar 

  98. Khianngam S, Akaracharanya A, Tanasupawat S, Lee KC, Lee J-S (2009a) Paenibacillus thailandensis sp. nov. and Paenibacillus nanensis sp. nov., xylanase-producing bacteria from Thai soils. Int J Syst Evol Microbiol 59:564–568

    Article  CAS  PubMed  Google Scholar 

  99. Khianngam S, Tanasupawat S, Lee J-S, Lee KC, Akaracharanya A (2009b) Paenibacillus siamensis sp. nov., Paenibacillus septentrionalis sp. nov., and Paenibacillus montaniterrae sp. nov., xylanase-producing bacteria from Thai soils. Int J Syst Evol Microbiol 59:130–134

    Article  CAS  PubMed  Google Scholar 

  100. Adlakha N, Rajagopal R, Kumar S, Reddy VS, Yazdani SS (2011) Synthesis and characterization of chimeric proteins based on cellulase and xylanase from an insect gut bacterium. Appl Environ Microbiol 77(14):4859–4866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ghio S, Lorenzo GS, Lia V, Talia P, Cataldi A, Grasso D, Campos E (2012) Isolation of Paenibacillus sp. and Variovorax sp. strains from decaying woods and characterization of their potential for cellulose deconstruction. International Journal of Biochemistry and Molecular Biology 3(4):352–364

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Ghio S, Insani EM, Piccinni FE, Talia PM, Grasso DH, Campos E (2016) GH10 XynA is the main xylanase identified in the crude enzymatic extract of Paenibacillus sp. A59 when grown on xylan or lignocellulosic biomass. Microbiol Res:186–187

  103. Fathallh Eida M, Nagaoka T, Wasaki J, Kouno K (2012) Isolation and characterization of cellulose-decomposing bacteria inhabiting sawdust and coffee residue composts. Microbes Environ 27(3):226–233

    Article  PubMed  Google Scholar 

  104. Shi P, Tian J, Yuan T, Liu X, Huang H, Bai Y, Yang P, Chen X, Wu N, Yao B (2010) Paenibacillus sp. strain E18 bifunctional xylanase-glucanase with a single catalytic domain. Appl Environ Microbiol 76(11):3620–3624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Farinas CS, Loyo MM, Baraldo A, Tardioli PW, Neto VB, Couri S (2010) Finding stable cellulase and xylanase: evaluation of the synergistic effect of pH and temperature. New Biotechnol 27(6):810–815

    Article  CAS  Google Scholar 

  106. Olofsson K, Bertilsson M, Lidén G (2008) A short review on SSF—an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnology for Biofuels 1(1)

  107. Adlakha N, Sawant S, Anil A, Lali A, Yazdani SS (2012) Specific fusion of β-1,4-endoglucanase and β-1,4-glucosidase enhances cellulolytic activity and helps in channeling of intermediates. Appl Environ Microbiol 78(20):7447–7454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ogawa A, Suzumatsu A, Takizawa S, Kubota H, Sawada K, Hakamada Y et al (2007) Endoglucanases from Paenibacillus spp. form a new clan in glycoside hydrolase family 5. J Biotechnol 129(3):406–414

    Article  CAS  PubMed  Google Scholar 

  109. Tjalsma H, Antelmann H, Jongbloed JD, Braun PG, Darmon E, Dorenbos R et al (2004) Proteomics of protein secretion by Bacillus subtilis: separating the “secrets” of the secretome. Microbiol Mol Biol Rev 68(2):207–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kumar D, Ashfaque M, Muthukumar M, Singh M, Garg N (2012) Production and characterization of carboxymethyl cellulase from Paenibacillus polymyxa using mango peel as substrate. J Environ Biol 33(1):81–84

    CAS  PubMed  Google Scholar 

  111. Ko CH, Tsai CH, Lin PH, Chang KC, Tu J, Wang YN et al (2010) Characterization and pulp refining activity of a Paenibacillus campinasensis cellulase expressed in Escherichia coli. Bioresour Technol 101(20):7882–7888

    Article  CAS  PubMed  Google Scholar 

  112. Park IH, Chang J, Lee YS, Fang SJ, Choi YL (2012) Gene cloning of endoglucanase Cel5A from cellulose-degrading Paenibacillus xylanilyticus KJ-03 and purification and characterization of the recombinant enzyme. Protein J 31(3):238–245

    Article  CAS  PubMed  Google Scholar 

  113. Liang YL, Zhang Z, Wu M, Wu Y, Feng JX (2014) Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1. Biomed. Res. Int. 512497.

  114. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  CAS  PubMed  Google Scholar 

  115. Bezerra RMF, Dias AA (2004) Discrimination among eight modified Michaelis-Menten kinetics models of cellulose hydrolysis with a large range of substrate/enzyme ratios: inhibition by cellobiose. Appl Biochem Biotechnol 112(3):173–184

    Article  CAS  PubMed  Google Scholar 

  116. Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56(1):1–24

    Article  CAS  PubMed  Google Scholar 

  117. Wiselogel A, Tyson S and Jhonson D (1996) Biomass feedstock resources and composition In: Hand-book on bioethanol: production and utilization. Wyman CE (ed), Taylor & Francis. Applied Energy Technology Series, pages 105–118.

Download references

Acknowledgments

The authors thank the Bioenergy Thematic Network (“Red Temática de Bioenergía”) for grant no. 260457.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Argel Gastelum-Arellanez.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orencio-Trejo, M., De la Torre-Zavala, S., Rodriguez-Garcia, A. et al. Assessing the Performance of Bacterial Cellulases: the Use of Bacillus and Paenibacillus Strains as Enzyme Sources for Lignocellulose Saccharification. Bioenerg. Res. 9, 1023–1033 (2016). https://doi.org/10.1007/s12155-016-9797-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-016-9797-0

Keywords

Navigation